Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Abilities required for success in school don’t differ greatly from those required in the real world

12.01.2004


General cognitive ability is related to success in multiple domains

Intelligence in the workplace is not that different from intelligence at school, according to the results of a meta-analysis of over one hundred studies involving more than 20,000 people. The findings contradict the popular notion that abilities required for success in the real world differ greatly from what is needed to achieve success in the classroom. The results are published in the January issue of the American Psychological Association’s (APA) Journal of Personality and Social Psychology.

General cognitive ability, or g, has remained controversial since the concept was introduced nearly a century ago. Research has shown that g predicts a broad spectrum of behaviors and performances, including academic achievement, job performance, creativity and health-related behaviors. Despite this, many people, including some social scientists, continue to believe that the abilities required for job success and abilities required for academic success are different.



In their meta-analysis of 127 studies involving 20,352 participants, psychologists Nathan R. Kuncel, Ph.D., and Sarah A. Hezlett, Ph.D., of the University of Illinois at Urbana-Champaign and Deniz S. Ones, Ph.D., of the University of Minnesota, Twin Cities Campus, set out to directly test whether the abilities related to performance in academic settings overlap with those predicting performance in work settings. To do this, they focused on studies that involved the Miller Analogies Test, or MAT. The MAT has been used for admissions decisions into graduate schools as well as in hiring and promotion decisions in the workplace. In use since 1926, the MAT is composed of analogies that require knowledge in many different areas, including sciences, literature, the arts, history and vocabulary.

The researchers found that the MAT was valid for predicting performance in both academic and work environments, providing direct evidence that g is related to success in multiple domains. The MAT was found to be a valid predictor of several aspects of graduate student performance as well as measures of job performance, potential and creativity. The validity was at least as high for work criteria as for school criteria. The researchers found that the MAT was a valid predictor of seven of the eight measures of graduate student performance, five of the six school-to-work transition performance criteria, and four of the work performance criteria.

"Although the academic setting places a greater emphasis on the acquisition of knowledge, performance in both academic and work settings is predicted by g," according to the researchers. "Both situations involve learning and contain complex or practical tasks and performance in both situations is partially determined by previously acquired levels of knowledge and skill. General cognitive ability is related to all three of these, which is why it should come as no surprise that the same cognitive ability test is a valid predictor of performance in both settings."

So why do so many people believe that the abilities required for success are so different for academic and work environments? "Perhaps the fact that tests and measures are often developed for particular settings, either educational or occupational, has perpetuated this myth," say the authors. "Our prediction was – and the results confirm – that there is a general factor of cognitive ability which is a broad predictor of numerous life outcomes."


Article: "Academic Performance, Career Potential, Creativity, and Job Performance: Can One construct Predict Them All?," Nathan R. Kuncel and Sarah A. Hezlett, University of Illinois at Urbana-Champaign and Deniz S. Ones, University of Minnesota, Twin Cities Campus; Journal of Personality and Social Psychology, Vol. 86, No. 1.

Full text of the article is available from the APA Public Affairs Office or at http://www.apa.org/releases/success_article.pdf.

Lead author Nathan Kuncel, Ph.D., can be reached by e-mail at nkuncel@uiuc.edu.

The American Psychological Association (APA), in Washington, DC, is the largest scientific and professional organization representing psychology in the United States and is the world’s largest association of psychologists. APA’s membership includes more than 150,000 researchers, educators, clinicians, consultants and students. Through its divisions in 53 subfields of psychology and affiliations with 60 state, territorial and Canadian provincial associations, APA works to advance psychology as a science, as a profession and as a means of promoting health, education and human welfare.

David Partenheimer | APA
Further information:
http://www.apa.org/releases/success.html
http://www.apa.org/releases/success_article.pdf

More articles from Social Sciences:

nachricht New measure for the wellbeing of populations could replace Human Development Index
07.11.2018 | International Institute for Applied Systems Analysis (IIASA)

nachricht Because not only arguments count
30.10.2018 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>