Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First study to watch brain patterns when forgiving

09.10.2003


Different parts of brain are activated

In the first study ever to examine how the brain functions when making judgments about forgivability and empathy, researcher Tom Farrow, B.Sc. (Hons.), Ph.D., found that different regions of the brain are activated when a person makes judgments about forgiving.

The findings will be presented at the Scientific Conference on Forgiveness along with studies from over 40 of the top scientists in the world who study forgiveness. The conference is in Atlanta October 24-25. To register, log on to the Press Room at: http://www.forgiving.org/campaign/clippings.asp



This study, conducted in the UK, shows that forgiveness is a complex process that occurs in the brain. Different parts of the brain are utilized when a person makes moral judgments, empathizes with someone and eventually makes judgments about how forgivable the person and/or action may be. Farrow’s study is the first ever to examine how the brain functions when making judgments about forgivability and empathy. Through MRI scanning of a healthy control group, the study found that judgments about forgivability and empathy produced a distinct pattern of brain activity.

Following therapy, the brain activity of two separate groups of patients, one with Post Traumatic Stress Disorder and the other with Schizophrenia, appeared to normalize and return to the patterns seen in the healthy control group. These changes were noted in the portion of the brain involved in feeling empathy and making moral judgments. Changes were not as pronounced in the regions of the brain that controls forgivability judgments.

Farrow is a Lecturer in Adult Psychiatry (Neuroimaging), Sheffield Cognition and Neuroimaging Laboratory (SCANLab), Sheffield University, UK. He is also a Visiting Royal Society Overseas Research Fellow, Brain DynamicsCentre,Westmead Hospital and Honorary Lecturer, Department of Psychological Medicine, University of Sydney, Australia.

(Control data published in the Journal of Neuro Report, Vol. 12, Issue 11, pages 2433-2438 in 2001; PTSD data under submission to the British Journal of Psychiatry; Schizophrenia data is being typed up and prepared for submission; PTSD and Schizophrenia data presented at many conferences in the U.S., Japan and Australia.)

ABSTRACT: Farrow, Tom: Brain Imaging and Empathic and Forgivability Judgments

1. Brain imaging of high-level cognitive functions is feasible.
2. Physiologically, forgiveness is almost certainly a multi-dimensional complex cognitive process.
3. Preliminary evidence suggests that it may be possible to demonstrate brain activation change, concomitant with symptom resolution and / or therapeutic input.

Forgiveness is likely to comprise multiple cognitive components. One such component may be the ability to judge the forgivability of another’s actions. Another component may be an ability to empathize with others, including an aggressor. Empathy consists of two components: an affective (visceral emotional reaction) and a cognitive (understanding of the conspecific’s behaviour). Empathy and forgiveness are also both heavily dependent on the expression and interpretation of emotions. We used functional MRI to examine the neural correlates of making empathic and forgivability judgments. To our knowledge this is the first study to examine the functional anatomy of forgiveness. We posited that forgiveness incorporates judgments of another’s intentions, their emotional state and the forgivability of their actions. While it was not feasible to image subjects actively forgiving or empathizing in ’real life’, we used narrative scenarios derived from everyday life, to probe the neural systems supporting these complex cognitive functions. We hypothesised that fronto-temporal regions would be differentially activated by these tasks.

Method:-12 healthy control subjects and 13 patients with posttraumatic stress disorder (PTSD) underwent fMRI scanning, while they engaged in tasks: (i) that involve speculation on another’s intention, (ii) that invoke empathy and (iii) involve making judgments of actions’ forgivability; each versus ’baseline’ social reasoning judgments. A post-therapy fMRI scan followed a course of cognitive behavioral therapy with a forgiveness component. Results: Post-therapy, we found increased activation in brain regions predicted on the basis of foregoing work in healthy controls. These included significant left middle temporal gyrus activation in post-therapy response to empathy judgments and posterior cingulate gyrus activation in post-therapy response to forgivability judgments.

Conclusions: Empathic and forgivability judgments activate specific regions of the human brain, which we propose contribute to social cohesion. The activation in these regions changed with symptom resolution in PTSD.

Vicki Robb | EurekAlert!
Further information:
http://www.forgiving.org/
http://www.forgiving.org/campaign/clippings.asp

More articles from Social Sciences:

nachricht High acceptance for smart products
21.02.2020 | Universität Luzern

nachricht Trash talk hurts, even when it comes from a robot
19.11.2019 | Carnegie Mellon University

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>