Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Video game used for study of human navigation

11.09.2003


Using a video game featuring a yellow taxi, virtual city and human players with electrodes embedded in their memory banks, neuroscientists at UCLA and Brandeis University have discovered how three types of brain cells interact to help people navigate the real world.

Published in the Sept. 11 edition of the peer-reviewed journal Nature, the findings offer unique information about how human memory works and present new avenues of investigation for treatment of memory disorders such as Alzheimer’s disease.

The research, which evaluated the responses of patients already attached to EEG monitors to determine the focus of epileptic seizures, also demonstrates how clinical patient settings offer unique opportunities to learn about the mind and body.



Researchers monitored signals from individual brain cells as patients played a computer game in which they explored a virtual town in a taxi. The players searched for passengers who appeared in random locations and delivered them to designated stores.

"Our findings provide the first glimpse at the visually based neural code used by humans to form spatial maps of their environment and navigate from location to location," said neurosurgeon Dr. Itzhak Fried, who is professor of neurosurgery at the David Geffen School of Medicine at UCLA and professor of psychiatry and biobehavioral sciences at UCLA Neuropsychiatric Institute. "Damage to these groups of cells can cause people to lose their ability to negotiate their environment and remember new surroundings."

"The success of this project is also an important illustration of the value of clinical patient settings in learning about the mind and body," said Fried, who has pioneered methods for studying the cellular basis of human vision and memory. "The understanding gained from such studies may eventually help future patients with brain disorders affecting the brain memory systems."

The Nature article identifies distinct cells that help humans determine 1) where they are (place); 2) what they see (view); and 3) what they are looking for (goal). The research team found "place" cells primarily in the hippocampus and "view" cells primarily in the parahippocampal region.

"Our study shows how cells in the human brain rapidly learn to respond to complex features of our environment. One of the most intriguing discoveries was that some cells respond to combinations of place, view and goal. For example, we found cells that responded to viewing an object only when that object was a goal," said Dr. Michael Kahana, associate professor at Brandeis University and an expert in the neurophysiology of human spatial navigation.

"Our results suggest that our navigation system preserves some elements of the same system used by other mammals, but also has some features unique to us because of our highly developed visual system," said first author, Arne Ekstrom, who is a doctoral student at Brandeis University.

Previous research had identified "place" cells in the hippocampus of rodents, until now perhaps the most striking example of a correlation between brain cell activity and complex behavior in mammals. These cells increase their firing rate when the animal moves across specific portions of its surroundings.

Neuroimaging studies had implicated the hippocampus and the parahippocampal region as keys to human navigation, but until now it remained unclear whether rodent-like place coding occurs in humans, or whether human navigation is driven by a different neural mechanism based on vision.

This study shows that place cells are indeed important in humans, but that other cells aid in navigation by coding for landmarks (view cells) and the intended goal (goal cells).

At UCLA, the research team recorded responses of single neurons in seven subjects who were patients with epilepsy undergoing invasive monitoring with intracranial electrodes to identify the seizure focus for potential surgical treatment.

The researchers recorded the activity of 317 neurons: 67 cells in the hippocampus, 54 in the parahippocampal region, 111 in the amygdala and 85 in the frontal lobes. To determine the nature of cellular responses while subjects performed tasks on the computer, researchers compared activity rates related to subject location in the virtual town (place), the object they viewed (view), and their goal.



Online Resources:
UCLA Division of Neurosurgery: http://neurosun.medsch.ucla.edu
UCLA Neuropsychiatric Institute: www.npi.ucla.edu
David Geffen School of Medicine: www.medsch.ucla.edu
Brandeis Computational Memory Laboratory: http://fechner.ccs.brandeis.edu
Dr. Itzhak Fried biography: http://neurosun.medsch.ucla.edu/Faculty/Fried/Faculty_Fried.html
Dr. Michael Kahana biography: http://memlab1.ccs.brandeis.edu/~kahana

Dan Page | EurekAlert!
Further information:
http://www.ucla.edu/

More articles from Social Sciences:

nachricht Engineering cooperation
05.07.2018 | Institute of Science and Technology Austria

nachricht Research project: EUR 3.3 million for improved quality of life in shrinking cities
02.07.2018 | Technische Universität Kaiserslautern

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>