Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn and German researchers help identify neural basis of multitasking

02.09.2015

What makes someone better at switching between different tasks? Looking for the mechanisms behind cognitive flexibility, researchers at the University of Pennsylvania and Germany's Central Institute of Mental Health in Mannheim and Charité University Medicine Berlin have used brain scans to shed new light on this question.

By studying networks of activity in the brain's frontal cortex, a region associated with control over thoughts and actions, the researchers have shown that the degree to which these networks reconfigure themselves while switching from task to task predicts people's cognitive flexibility.


These plots show connection strength between nodes in the brain during the control task (top) and the memory task (bottom). Brain regions are arrayed on both the X and Y axes; the strength of their connection is indicated by the color of the coordinate where they meet.

Credit: Proceedings of the National Academy of Sciences

Experiment participants who performed best while alternating between a memory test and a control test showed the most rearrangement of connections within their frontal cortices as well as the most new connections with other areas of their brains.

A more fundamental understanding of how the brain manages multitasking could lead to better interventions for medical conditions associated with reduced executive function, such as autism, schizophrenia or dementia.

Danielle Bassett, the Skirkanich Assistant Professor of Innovation in Penn's School of Engineering and Applied Science, is senior author on the study. Manheim's Urs Braun and Axel Schäfer were the lead authors. The research also featured work from Andreas Meyer-Lindenberg and Heike Tost of Mannheim, Henrik Walter of Charité, and others.

It was published in the Proceedings of the National Academy of Sciences.

Rather than looking at the role a single region in the brain plays, Bassett and colleagues study the interconnections between the regions as indicated by synchronized activity. Using fMRI, they can measure which parts of the brain are "talking" to one another as study participants perform various tasks. Mapping the way this activity network reconfigures itself provides a more holistic view of how the brain operates.

"We try to understand how dynamic flexibility of brain networks can predict cognitive flexibility, or the ability to switch from task to task," Bassett said. "Rather than being driven by the activity of single brain areas, we believe executive function is a network-level process."

A previous study that Bassett led showed that people who could more quickly "disconnect" their frontal cortices did better on a task that involved pressing keys that corresponded to color-coded notes on a screen. The high level decision-making associated with the frontal cortex's cognitive control wasn't as critical to playing the short sequences of notes, so those who still engaged this part of the brain were essentially overthinking a simple problem.

In the new experiment, lead by Andreas Meyer-Lindenberg of Mannheim, 344 participants alternated between a working memory task designed to engage the frontal cortex and a control task. The easy task involved pressing the corresponding button as a sequence of numbers appeared on a screen one by one. The hard task also involved a sequence of numbers on a screen, but participants had to press the button that corresponded to the number that appeared two places back in the series each time they saw a new one.

Urs Braun and Axel Schäfer, the lead authors on the paper, collaborated with Bassett, who has developed novel tools from network science to distill evolving brain connections. They used these tools to map how participants' brain activities rearranged during each block of the working memory task, each block of the control task and blocks in between where participants switched gears.

"The nodes in the network that are most involved in reconfigurations are cognitive control areas in the frontal cortex," Bassett said. "More flexibility within the frontal cortex meant more accuracy on the memory task, and more consistent connectivity between the frontal cortex and other regions was even more predictive."

While the predictive strength of this reconfiguration suggests that it is only one of several processes involved in successful task switching, it plays a core role.

"It doesn't account for a huge amount variance," Bassett said, "but it suggests that this kind of reconfiguration is a fundamental aspect of cognitive flexibility."

###

Other researchers who contributed to the study include Susanne Erk, Nina Romanczuk-Seiferth and Andreas Heinz of Berlin, and Leila Haddad, Janina I. Schweiger and Oliver Grimm of Mannheim.

The research was supported by the John D. and Catherine T. MacArthur Foundation; Alfred P. Sloan Foundation; Army Research Laboratory through contract W911NF-10-2-0022; Institute for Translational Medicine and Therapeutics at Penn; National Institute of Mental Health through award 2-R01-DC-009209-11; National Science Foundation through awards BCS-1441502 and BCS-1430087; German Federal Ministry of Education and Research through grants 01GS08144, 01GS08147 and 01GS08148; Innovative Medicines Initiative Joint Undertaking though grant agreement 115008; and German Federal Ministry of Education and Research through BMBF 01GQ1102.

Media Contact

Evan Lerner
elerner@upenn.edu
215-573-6604

 @Penn

http://www.upenn.edu/pennnews 

Evan Lerner | EurekAlert!

More articles from Social Sciences:

nachricht New measure for the wellbeing of populations could replace Human Development Index
07.11.2018 | International Institute for Applied Systems Analysis (IIASA)

nachricht Because not only arguments count
30.10.2018 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>