Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

39th IFF Spring School: Soft Matter – From Synthetic to Biological Materials

11.12.2007
The IFF Spring School 2008 will address advanced experimental techniques and applications, and theoretical and computer simulation methods on an undergraduate and graduate student level.

Introductory lectures provide the basis of important experimental and theoretical tools. More advanced lectures will explain practical aspects of various methods and will lead the participants from basic methods to the frontiers of current research.

The lectures cover the following topics:

Scattering Techniques
Single Molecule Techniques
Equilibrium- and Non-equilibrium
Statistical Physics
Microfluidics
Computer Simulations
Synthesis
Self-Organisation
Flow Properties and Rheology
Biomechanics
Macromolecules and Colloids
Membranes and Interfaces
Biomimetic Systems
Glasses and Gels
The school provides about 50 hours of lectures plus discussions and it offers the opportunity to participate in practical courses and visits to the participating institutes at the Research Centre Jülich. All lectures will be given in English by internationally renowned experts. All registered participants will receive a book of lecture notes, which contains all the material presented during the school.

| Forschungszentrum Jülich GmbH
Further information:
http://www.fz-juelich.de/iff/fs2008

More articles from Seminars Workshops:

nachricht Biomedical research continues to develop rapidly - resources to be pooled in MV
17.09.2018 | Leibniz-Institut für Nutzierbiologie (FBN)

nachricht Workshop on sensor data management in September
16.08.2018 | Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB

All articles from Seminars Workshops >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Journey to the center of Mars

20.02.2020 | Physics and Astronomy

Laser writing enables practical flat optics and data storage in glass

20.02.2020 | Physics and Astronomy

New graphene-based metasurface capable of independent amplitude and phase control of light

20.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>