Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Best Practice for Engineering Science Faculties

23.04.2008
DFG Workshop Presents International, Exemplary Management Models

How can the engineering science faculties of German universities meet the increasing demand for engineers in Germany, the world champion in exports? How must successful faculties of the future be structured in the face of increasing internationalisation and interdisciplinarity? And, what structures are particularly promising in this regard?

These questions were the focus of the workshop: “New Models for Governing Tomorrow’s Faculties of Engineering: Throwing Out the Baby with the Bath Water or Seizing New Opportunities”, recently held by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation). Some 40 high-ranking representatives of engineering science faculties who had been invited by DFG President Professor Matthias Kleiner travelled to the Head Office of Europe's largest research funding organisation in Bonn. In addition, representatives of the German Federal Ministry for Education and Research (BMBF), the German Rectors’ Conference (HRK) and the Alexander von Humboldt Foundation (AvH) participated in the workshop.

“Well-structured faculties are vital to us. They are an important setting for excellent research. For this reason, we would like to examine best practice examples of governance structures in engineering-science faculties from an international perspective and discuss them as they apply to the German university and research system,” said DFG President Kleiner as he outlined the primary focus of the workshop. Two such best practice concepts were presented in Bonn by their initiators. First, David Lynch, Dean of the Faculty of Engineering at the University of Alberta in Edmonton, Canada, described how he successfully realigned his faculty. Through an active professorship appointment and recruiting policy, he was not only able to considerably lower the average age of the faculty, but above all noticeably increase the interdisciplinarity and quality of the research work. Lynch was also very successful in his efforts in encouraging high school students to consider pursuing a degree in engineering. A thriving endowment culture rounds out the success model from Alberta, which also impressed Professor Frieder Meyer-Krahmer; BMBF State Secretary; Professor Kleiner; DFG President; and Professor Bernd Scholz-Reiter, DFG Vice President, during visits to Canada in the fall of 2007. This is also where the seed for the event in Bonn was planted, at which Meyer-Krahmer again emphasised the importance of Canada as an outstanding location for research and as an important cooperation partner for German research during the opening remarks.

As a best practice example from Germany, Detlef Löhe, Vice President for Research at the Karlsruhe Institute of Technology (KIT), presented his institution’s concept at the workshop in Bonn. Essentially, this organisation represents the merger of the University of Karlsruhe with the Karlsruhe Research Centre – a model that is unique in the German scientific landscape. The model also proved to be convincing in the Excellence Initiative of the federal and state governments for strengthening top-level research at universities and was awarded the coveted excellence status. Löhe's presentation illustrated the role that faculties will play in the future and what effects they will have on management structure and on researchers.

Also participating in the ensuing podium discussion was Manfred Nagl, chaiman of 4ING. The focus was on the best-possible management structures, particularly in the area of tension between the bottom-up and top-down approaches with respect to researchers. The questions of how engineers make the transition from industry back to universities and how more high school graduates, particularly females, can be encouraged to study the engineering sciences were also discussed.

As the presentations and discussion showed, the best practice examples open various options to engineering-science faculties in Germany. These were summarised in closing by DFG Vice President Scholz-Reiter in question form: Should the engineering sciences be based on more flexible, networked structures, such as those recently established by the Excellence Initiative in the universities? Or is success more likely to be found by strengthening the deanship structure and a professionalisation of the dean? Is a dean who is modelled on top-down acting Chief Executive Officer (CEO) more likely to be successful than the traditional model of the primus inter pares who represents the interests of the researchers according to the bottom-up principle? Or is the best solution a mixture of both?

How important the answers to these questions are was emphasised, last but not least, by DFG President Matthias Kleiner: “According to estimates, in five years we will be lacking 100,000 graduates, primarily in the engineering disciplines. For the faculties, this means that they will need to take innovative approaches in recruiting students and scientists and that they must make careers in science attractive.” Kleiner went on to say that, in particular, the salaries for researchers are not competitive, either internationally or compared to the market economy. The engineering faculties need to network more intensively with other scientific disciplines, particularly the natural sciences, in order to find new fields of research, said the DFG President. As Kleiner emphasised with reference to the title of the Bonn workshop, it all boils down to not throwing the baby – or in this case, Germany's excellent and world-renowned engineering education and engineering research – out with the bath water.

Further Information

Further information on the workshop including photos can be found at:
www.dfg.de/internationales/dfg_praesenz/washington/archiv/2008/workshop_bonn.html

Jutta Hoehn | alfa
Further information:
http://www.dfg.de/internationales/dfg_praesenz/washington/archiv/2008/workshop_bonn.html

More articles from Seminars Workshops:

nachricht Workshop on sensor data management in September
16.08.2018 | Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB

nachricht A look inside chemical reactions
01.08.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Seminars Workshops >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>