Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESF Workshop Makes Major Advance In Cancer Radiotherapy

10.11.2008
Radical improvements in outcome for many cancer sufferers are in prospect following one of the most significant advances in radiotherapy since x-rays were first used to treat a tumour in 1904.

The use of charged particles as an alternative to x-ray or gamma ray radiation can extend the scope of radiotherapy to tumours previously requiring invasive surgery, while speeding up diagnosis and reducing collateral damage to surrounding tissue.

This fast emerging field of charged particle cancer therapy was thrashed out at a recent workshop organised by the European Science Foundation (ESF), which discussed new instruments that will lead to improvements in both diagnosis and treatment. Diagnosis and treatment are closely linked in radiotherapy, since more accurate location of tumour cells in turn enables the radiation dose to be more precisely focused.

"Developments in imaging have allowed improvements in radiation beam placement, and the two areas tend to go together," said Barbara Camanzi, convenor of the ESF workshop, and specialist in radiotherapy instrumentation at the Rutherford Appleton Laboratory Department of Particle Physics near Oxford in the UK. This in turn improves prospects of destroying the tumour while reducing collateral damage to healthy tissue nearby. Such collateral damage causes not just tissue death, but can lead to induction of secondary tumours, which has been a long standing problem for traditional radiotherapy using x rays. Some tissue cells close to the tumour receive enough radiation to trigger mutations in their DNA that can cause them to become malignant, but not enough radiation to kill them.

"The fall in collateral radiation deposition in the body ranges from a factor of 2 to 15 depending on the precise treatment indication and body site," noted Bleddyn Jones, an oncologist attending the ESF workshop, from the Gray Institute for Radiation Oncology and Biology in Oxford, UK. "All techniques using external gamma rays and x-rays impart a larger dose to surrounding healthy tissue with long term risks of functional changes and malignant induction."

The improved imaging made possible by use of charged particles also makes it easier to detect tumours when they are small, improving prospects for patients whether or not they actually undergo radiotherapy. "Making an earlier diagnosis of a smaller cancer increases the chance of cure following either particle beam therapy or surgery," said Camanzi.

However, the ESF workshop identified that further significant improvements in instrumentation were required, both for treatment and diagnosis, to exploit the full potential of charged particles for cancer therapy. Further work was also required to adjust dose to minimise the risk of secondary tumour formation caused by the radiation, which remains a risk with use of charged particles. The ESF workshop also addressed the need for improved design of the gantry systems used both for imaging and to deliver the radiation doses in treatment.

The other important issue addressed by the ESF workshop is educating radiotherapy consultants in the new techniques so that they are in a position to determine the best form of treatment for each individual case. Sometimes charged therapy may be the best method, in other cases traditional x-ray therapy, and in yet others surgery or chemotherapy, or combinations of these.

"There is a need to hold more educational and training meetings on particle therapy especially in those European countries that at present have no plans for such facilities," said Camanzi, who noted that a follow up symposium in Oxford had been proposed for 2010.

Thomas Lau | alfa
Further information:
http://www.esf.org
http://www.esf.org/activities/exploratory-workshops/physical-and-engineering-sciences-pesc/workshops-detail.html?ew=6463

More articles from Seminars Workshops:

nachricht Workshop on sensor data management in September
16.08.2018 | Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB

nachricht A look inside chemical reactions
01.08.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Seminars Workshops >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>