Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MISTI helps bring iLabs to China

09.06.2006
Undergraduates are at the forefront of MIT's latest efforts to share educational technology with China.

On Tuesday, June 13, students will join MIT faculty at the first Asian MIT-iCampus Conference, an unprecedented effort to introduce China's top universities to iLabs, MIT's free online remote laboratory initiative.

iLabs allows students and educators anywhere to access MIT equipment to conduct science and engineering experiments.

"Universities can share what would ordinarily be extraordinarily expensive equipment, just using the Internet," said Hal Abelson, co-director of the MIT-Microsoft Research Alliance for Educational Technology, and professor of electrical engineering and computer science at MIT.

Thousands of students in Europe, Asia, Africa and the Middle East have used iLabs in their studies, using such equipment as a heat exchanger (which is important in the chemical engineering curriculum) to a shake table (which engineering students can use to study earthquakes).

At the Beijing conference, the MIT faculty who invented iLabs will demonstrate how the shared online laboratories can be integrated in the classroom, and representatives from the MIT-China Program (one of the eight work and study abroad programs organized by MISTI, the MIT International Science and Technology Initiatives) will explain the key role MIT students play in internationalizing iLabs.

A two-day technical workshop will follow for the Chinese universities that want to employ the iLab technology and design their own experiments.

Last summer, a team of undergraduates worked with Chinese students at Tsinghua University in Beijing through MISTI, demonstrating how to set up and access MIT's free online computer science courses, experiments and labs. The team also gathered feedback from the participants about how well the initiative worked within China's educational system.

"It's about introducing people to the technology so they can adopt it and use it themselves," said Scot Frank, a computer science student from Salt Lake City. "There are different teaching methodologies between the two countries but we really learn from each other. It's really collaboration."

MIT students first began working in China's high schools in the mid-1990s to help connect students to the Internet through the China Educational Technology Initiative. In 2004, MISTI used the same classroom model and sent teams of students to introduce OpenCourseWare on the college level in China. Last year four teams of students set up iLabs and iCampus projects at four Chinese universities. This summer, students will work in twice as many schools throughout China.

After the MIT-iCampus conference is over, the MISTI students will stay in China to continue to expand the use of educational technology in dozens of other institutions in China. For the MIT students, it's the ultimate on-the-job learning experience.

"Working internationally teaches you how to communicate with others even with a big difference in culture," said Frank. "It's also getting better at your own learning process since every situation you come into is always going to be different."

iLabs is an initiative of the MIT iCampus program, which is funded by Microsoft Corp. iCampus sponsors faculty innovations in educational technology, helps incubate them through classroom use, and promotes their adoption, evaluation and continued evolution through worldwide multi-institutional cooperation.

Kristen Collins | MIT News Office
Further information:
http://www.mit.edu

More articles from Science Education:

nachricht The Maturation Pattern of the Hippocampus Drives Human Memory Deve
23.07.2018 | Max-Planck-Institut für Bildungsforschung

nachricht Cebit 2018: Saarbrücken Start-up combines Tinkering and Programming for Elementary School Kids
05.06.2018 | Universität des Saarlandes

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>