Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eindhoven University of Technology starts Institute for Complex Molecular Systems

27.03.2008
Researchers from a wide range of disciplines at Eindhoven University of Technology (TU/e) will be joining forces in the Institute for Complex Molecular Systems (ICMS).

They will be investigating the exact mechanism behind self-organization, the principle behind all life on earth. Researchers plan to use this knowledge to build molecular mini-factories that could produce the next generation of catalysts, photosynthetic systems, nanocontainers and functional materials.

Prof. Bert Meijer will head the institute. The Executive Board of the university decided last week to allocate 15 million euros to the institute over the next 10 years.

Looking to nature as a model, TU/e scientists and engineers from the fields of mathematics, chemistry, physics and biology are taking on a tremendous challenge: to force a breakthrough in research into self-assembly among molecules. This is the next step toward manufacturing complex functional systems. Given the enormous possibilities afforded by nanoscience and microtechnology, researchers should be able to regulate the interactions between molecules such that the right molecular complex is formed. It is a highly complicated system where chemical and physical phenomena on different time and length scales come together.

Variety of disciplines

A group of renowned TU/e scientists is founding ICMS to meet this challenge. Professors Bert Meijer, Rutger van Santen, Mark Peletier and Jaap Schouten come from various backgrounds and will be devoting their energy to assembling complex molecular systems. Down the line, they will be joined by other TU/e researchers and newly recruited young researchers. More specifically, they will be examining the extent to which molecular self-organization can be controlled to take on functions as new catalysts, photosynthetic systems, and nanocontainers for biomedical applications. In the process, the institute will focus on several of the well-known research strengths at TU/e, and this line of research will further strengthen the university’s international standing.

Lively discussion

The institute itself is establishing an Advanced Study Center on the topic of complexity. The center will provide a forum for leading researchers from different disciplines to ponder complex problems over an extended period of time. It is hoped that lively discussion will produce unorthodox technological solutions to challenges facing society. In fact, it is precisely at times when specialists from different backgrounds work together that breakthroughs happen. The center will also be setting up a video studio to document the world of cells and complex molecular systems in dynamic moving images, allowing a much better understanding of this complex material.

The TU/e Executive Board is investing 15 million euros in the institute over the next 10 years, which illustrates just how vital research into molecular systems is.

Jim Heirbaut | alfa
Further information:
http://www.tue.nl

More articles from Science Education:

nachricht Cebit 2018: Saarbrücken Start-up combines Tinkering and Programming for Elementary School Kids
05.06.2018 | Universität des Saarlandes

nachricht The classroom of tomorrow – DFKI and TUK open lab for new digital teaching and learning methods
03.05.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>