Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Young cancer researcher receives 16 million SEK grant from the EU's new research council

19.12.2007
Martin Bergö, Associate Professor at the Sahlgrenska Academy at Göteborg University, is to receive a grant equivalent to 16 million SEK from the EU for studies into cancer and accelerated ageing.

His research project came out on top in tough competition with other leading young European researchers.

This funding, called the Starting Grant, is being awarded for the first time by the newly-established research funding body, the European Research Council (ERC). The aim of the ERC is to promote scientific excellence in Europe by supporting the best researchers with relatively large research grants. Only a small percentage of nearly 10 000 researchers who submitted an application last spring was successful.

"This grant means that we are regarded as occupying the absolute cutting edge of European research in our field, and it is important for both the Sahlgrenska Academy and Göteborg University. For me personally the grant means that I can focus more closely on my research during the next five years and expand my research team," says Associate Professor Martin Bergö.

Martin Bergö is studying two different diseases: cancer and accelerated ageing (progeria). Cancer is a common disease whilst progeria is a rare genetic disease. Children with progeria are born normal but show premature signs of ageing; they stop growing, lose their hair and develop cardiovascular diseases. They seldom survive beyond the age of 16. At present there is no treatment, but Martin Bergö has, together with a research team in the USA, identified a new treatment strategy which is currently being tested on children with progeria. The research has also provided a new genetic method of studying the underlying mechanisms and the treatment of cancer.

"My vision is that the research will lead to a better understanding of the causes of cancer and progeria and to find new treatments. We also hope that our studies into progeria will provide us with new information about the factors that govern normal ageing," adds Martin Bergö.

What is the link between cancer and progeria? Both diseases are caused by mutations in what is known as a CAAX protein. Martin Bergö's research has gone a step further and shown that both diseases can be treated with the same type of drug. The CAAX proteins that cause progeria and cancer are transported to a variety of intracellular locations. The transport of CAAX proteins is regulated by a number of enzymes. Martin Bergö is testing the hypothesis that cancer and progeria can be treated by using drugs that block some of these enzymes. The aim of treatment is to prevent the mutated CAAX proteins being transported to the locations within the cell where they cause damage.

To test this hypothesis, the research team has developed genetically modified mice that develop progeria and various forms of cancer. The unique aspect of the group's mouse models is that it is also possible to stop the production of the enzymes that govern the transport of the mutated CAAX proteins.

"When we stopped the production of one of the enzymes, the rate of tumour development dropped sharply in mice with cancer, and there are early indications that we can reduce the incidence of bone fractures which are common in mice with progeria. But even if our research suggests that drugs that block these enzymes can be effective future treatment for both diseases, there is much research left to do. Therefore, the money from the ERC is extremely welcome," says Martin Bergö.

Martin Bergö studied medicine in Umeå and defended his doctoral thesis in medical biochemistry in 1998. Following his doctorate he was recruited for postdoctoral training at the Gladstone Institute in San Francisco, USA, where he spent five very productive years. For the past 3 years Martin Bergö has lived in Kungsbacka outside Göteborg and has led a research team at the Wallenberg Laboratory, Sahlgrenska Academy at Göteborg University.

For further information, please contact:
Associate Professor Martin Bergö, telephone: +46 733 12 22 24, +46 31 342 78 58, +46 300 26226; e-mail: martin.bergo@wlab.gu.se

Pressofficer Ulrika Lundin; ulrika.lundin@sahlgrenska.gu.se; +46-70 775 88 51

Ulrika Lundin | idw
Further information:
http://www.vr.se

More articles from Science Education:

nachricht Cebit 2018: Saarbrücken Start-up combines Tinkering and Programming for Elementary School Kids
05.06.2018 | Universität des Saarlandes

nachricht The classroom of tomorrow – DFKI and TUK open lab for new digital teaching and learning methods
03.05.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>