Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Real Science in Virtual School Labs

15.05.2012
Up-to-date marine data enables students to carry out scientifically valid virtual experiments. The method yields insights on how scientific knowledge is created and developed, according to research from the University of Gothenburg, Sweden.

Researchers from the University of Gothenburg followed upper-secondary students from the Swedish town of Lysekil for one year. The study was part of the research project I2I, Inquiry to Insight.

Using scientific data provided by the marine researchers involved in the project, the students explored the marine environment of the Gullmar Fjord on the Swedish west coast. The students used a virtual ocean acidification lab to conduct studies on acidification of the marine environment, studies with impressive validity based on the latest authentic data.

The method of using virtual tools has a high level of applicability and can be used in a wide range of learning situations, within both the natural and social sciences. The main point of using the method is that it makes students truly understand how scientific knowledge is created.

‘It’s a fast, safe and cheap way to get the work done, in contrast to expensive and sometimes dangerous science labs in schools. It’s based on authentic research results that the students can compare with their own results. The experiments allow students to for example simulate the future, and they can stop what they’re doing at the end of a class and pick up where they left off a week later. That’s perfect in a school context,’ says Senior Lecturer Annika Lantz-Andersson.

The Gothenburg researchers believe that the methods used in Lysekil could work well on a national scale thanks to the ample access to scientific data and cheap virtual tools.

The project partners at Stanford University in USA assessed the knowledge levels of more than 500 students before and after using the virtual lab. Their results enabled the researchers in Gothenburg to study how the students developed an understanding of scientific work and concepts. Now the researchers are trying to learn more concretely how virtual lab students work to find answers and discuss how studies and experiments should be designed to yield new knowledge. This work is based on about 25 hours of video-taped student interaction in the lab environment.

One conclusion that confirms previous research on digital tools is that the work of the teacher is extremely critical to successful learning.

‘The way that the teacher introduces a lab session is crucial, and it is important to realise that computer software is not by any means self-instructive. The teacher needs to actively challenge the students’ understanding and give them a chance to ponder over what the virtual experiments are meant to represent. The teacher’s communication with the students is very important in order to avoid that the virtual experiments end up being just another abstract computer task,’ says Lantz-Andersson.

For more information please contact:
Senior Lecturer Annika Lantz-Andersson, Department of Education, Communication and Learning
Telephone: +46 (0)31–786 2275
Mobile: +46 (0)705 464 755
E-mail: annika.lantz-andersson@ped.gu.se
Personal webpage: http://www.ipkl.gu.se/kontakt/personal/annika_lantz-andersson/
Project Coordinator: Géraldine Fauville, The Sven Lovén Centre for Marine Sciences
Telephone: +46 (0)31 786 95 18
E-mail: geraldine.fauville@loven.gu.se
Personal webpage: http://www.letstudio.gu.se/members/geraldine-fauville/

Helena Aaberg | idw
Further information:
http://www.gu.se
http://www.letstudio.gu.se/members/geraldine-fauville/
http://www.ipkl.gu.se/kontakt/personal/annika_lantz-andersson/

More articles from Science Education:

nachricht How Humans and Machines Navigate Complex Situations
19.11.2018 | Max-Planck-Institut für Bildungsforschung

nachricht A gene activated in infant and young brains determines learning capacity in adulthood
13.11.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Novel mechanism of electron scattering in graphene-like 2D materials

17.09.2019 | Materials Sciences

Novel anti-cancer nanomedicine for efficient chemotherapy

17.09.2019 | Health and Medicine

Fungicides as an underestimated hazard for freshwater organisms

17.09.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>