Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powering up for new HIPIMS research centre

27.07.2010
Sheffield Hallam University has established a HIPIMS Research Centre with German research institute Fraunhofer IST to lead the global development of the physical vapour deposition (PVD) process - which is revolutionising high tech industry by improving the quality of a wide range of applications from jet engines, through microelectronics to biomedical implants.

A machine which pumps out power pulses with the same intensity as a lightning bolt has helped strike up another important relationship - the launch of an international research centre by UK and German scientists.

Sheffield Hallam University has established a HIPIMS Research Centre with German research institute Fraunhofer IST to lead the global development of the physical vapour deposition (PVD) process - which is revolutionising high tech industry by improving the quality of a wide range of applications from jet engines, through microelectronics to biomedical implants.

Sheffield Hallam, which pioneered HIPIMS - High Power Impulse Magnetron Sputtering - in 2001, launched the new research centre at the 1st International Conference on HIPIMS held in the city earlier this month.

The conference was a success in itself, attracting more than 120 of the top scientists and industrialists in the field of HIPIMS.

Dr Arutiun Ehiasarian, director of the HIPIMS Research Centre at Sheffield Hallam, said: "Sheffield Hallam and Fraunhofer are the pioneers in HIPIMS and this new centre will help to implement this process in industry across the world.

"By establishing a common philosophy and working processes, we can explore the full potential of HIPIMS in developing coatings applications for the aerospace and automotive industries, as well as functional coatings and microelectronics research."

The HIPIMS process can help in the manufacture of a range of products from jet engines to knee joints by pumping out an eight mega watt of electrical impulses that create a plasma to improve coatings.

International companies are queuing up to work with the new research centre, which will be based at Sheffield Hallam, to develop better performing coatings for jet turbines, microelectronics, space satellites, photovoltaics, titanium-framed spectacles and tea cups.

Fraunhofer IST, which has expertise in developing tribological, optical, electronic, and sensor coatings, were in Sheffield to launch the research centre on July 6 and 7 this year.

Professor Günter Bräuer, director of Fraunhofer IST said: "Joining up resources from Sheffield Hallam and Fraunhofer IST creates a worldwide unique Competence Centre for innovative sputter processes.”

Professor Mike Smith, pro vice chancellor for research and knowledge transfer at Sheffield Hallam, said: "This new research centre cements a long and successful collaboration between Sheffield Hallam and Fraunhofer to expand our research and understanding of the HIPIMS process.

"This leap forward will help lead to replacement knee and hip joints becoming longer-lasting, and to jet engines performing at a higher temperature and with greater efficiency."

Contacts

Sheffield Hallam University, UK: Laurie Harvey, pressoffice@shu.ac.uk;
Fraunhofer Institute for Surface Engineering and Thin Films IST, Germany: Dr. Simone Kondruweit, simone.kondruweit@ist.fraunhofer.de

Dr. Simone Kondruweit | idw
Further information:
http://www.ist.fraunhofer.de
http://www.shu.ac.uk/news

More articles from Science Education:

nachricht The Maturation Pattern of the Hippocampus Drives Human Memory Deve
23.07.2018 | Max-Planck-Institut für Bildungsforschung

nachricht Cebit 2018: Saarbrücken Start-up combines Tinkering and Programming for Elementary School Kids
05.06.2018 | Universität des Saarlandes

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

Im Focus: Graphene enables clock rates in the terahertz range

Graphene is considered a promising candidate for the nanoelectronics of the future. In theory, it should allow clock rates up to a thousand times faster than today’s silicon-based electronics. Scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) and the University of Duisburg-Essen (UDE), in cooperation with the Max Planck Institute for Polymer Research (MPI-P), have now shown for the first time that graphene can actually convert electronic signals with frequencies in the gigahertz range – which correspond to today’s clock rates – extremely efficiently into signals with several times higher frequency. The researchers present their results in the scientific journal “Nature”.

Graphene – an ultrathin material consisting of a single layer of interlinked carbon atoms – is considered a promising candidate for the nanoelectronics of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

World's first passive anti-frosting surface fights ice with ice

18.09.2018 | Materials Sciences

A novel approach of improving battery performance

18.09.2018 | Materials Sciences

Scientists use artificial neural networks to predict new stable materials

18.09.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>