Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powering up for new HIPIMS research centre

27.07.2010
Sheffield Hallam University has established a HIPIMS Research Centre with German research institute Fraunhofer IST to lead the global development of the physical vapour deposition (PVD) process - which is revolutionising high tech industry by improving the quality of a wide range of applications from jet engines, through microelectronics to biomedical implants.

A machine which pumps out power pulses with the same intensity as a lightning bolt has helped strike up another important relationship - the launch of an international research centre by UK and German scientists.

Sheffield Hallam University has established a HIPIMS Research Centre with German research institute Fraunhofer IST to lead the global development of the physical vapour deposition (PVD) process - which is revolutionising high tech industry by improving the quality of a wide range of applications from jet engines, through microelectronics to biomedical implants.

Sheffield Hallam, which pioneered HIPIMS - High Power Impulse Magnetron Sputtering - in 2001, launched the new research centre at the 1st International Conference on HIPIMS held in the city earlier this month.

The conference was a success in itself, attracting more than 120 of the top scientists and industrialists in the field of HIPIMS.

Dr Arutiun Ehiasarian, director of the HIPIMS Research Centre at Sheffield Hallam, said: "Sheffield Hallam and Fraunhofer are the pioneers in HIPIMS and this new centre will help to implement this process in industry across the world.

"By establishing a common philosophy and working processes, we can explore the full potential of HIPIMS in developing coatings applications for the aerospace and automotive industries, as well as functional coatings and microelectronics research."

The HIPIMS process can help in the manufacture of a range of products from jet engines to knee joints by pumping out an eight mega watt of electrical impulses that create a plasma to improve coatings.

International companies are queuing up to work with the new research centre, which will be based at Sheffield Hallam, to develop better performing coatings for jet turbines, microelectronics, space satellites, photovoltaics, titanium-framed spectacles and tea cups.

Fraunhofer IST, which has expertise in developing tribological, optical, electronic, and sensor coatings, were in Sheffield to launch the research centre on July 6 and 7 this year.

Professor Günter Bräuer, director of Fraunhofer IST said: "Joining up resources from Sheffield Hallam and Fraunhofer IST creates a worldwide unique Competence Centre for innovative sputter processes.”

Professor Mike Smith, pro vice chancellor for research and knowledge transfer at Sheffield Hallam, said: "This new research centre cements a long and successful collaboration between Sheffield Hallam and Fraunhofer to expand our research and understanding of the HIPIMS process.

"This leap forward will help lead to replacement knee and hip joints becoming longer-lasting, and to jet engines performing at a higher temperature and with greater efficiency."

Contacts

Sheffield Hallam University, UK: Laurie Harvey, pressoffice@shu.ac.uk;
Fraunhofer Institute for Surface Engineering and Thin Films IST, Germany: Dr. Simone Kondruweit, simone.kondruweit@ist.fraunhofer.de

Dr. Simone Kondruweit | idw
Further information:
http://www.ist.fraunhofer.de
http://www.shu.ac.uk/news

More articles from Science Education:

nachricht How Humans and Machines Navigate Complex Situations
19.11.2018 | Max-Planck-Institut für Bildungsforschung

nachricht A gene activated in infant and young brains determines learning capacity in adulthood
13.11.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Shell increases versatility of nanowires

26.06.2019 | Materials Sciences

Hubble finds tiny 'electric soccer balls' in space, helps solve interstellar mystery

26.06.2019 | Physics and Astronomy

New combination therapy established as safe and effective for prostate cancer

26.06.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>