Using optical fiber to generate a two-micron laser

Camille Bres and Svyatoslav Kharitonov describe a cost-effective way to generate two-micron lasers, using only thulium-doped optical fibers instead of amplifiers and isolators. Credit: Alban Kakulya / EPFL

In recent years, two-micron lasers (0.002 millimetre) have been of growing interest among researchers. In the areas of surgery and molecule detection, for example, they offer significant advantages compared to traditional, shorter-wavelength lasers.

However, two-micron lasers are still in their infancy and not yet as mature as their telecom counterparts (1.55-micron). Moreover sources currently used in labs are typically bulky and expensive. Optical fibre-based 2 micron lasers are an elegant solution to these issues. This is where researchers at Photonics Systems Laboratory (PHOSL) come in.

In an article published in Light: Science & Applications, the team of Camille Brès at EPFL described a way to design these lasers at a lower cost, by changing the way optical fibres are connected to each other.

Thanks to the new configuration, they were able not only to produce very good 2 micron lasers, but also to do without an expensive and complex component that is normally required.

Bloodless surgery and long-range molecule détection

Two-micron spectral domain has potential applications in medicine, environmental sciences and industry. At these wavelengths, the laser light is easily absorbed by water molecules, which are the main constituents of human tissue.

In the realm of high precision surgery, they can be used to target water molecules during an operation and make incisions in very small areas of tissue without penetrating deeply. What is more, the energy from the laser causes the blood to coagulate on the wound, which prevents bleeding.

Two-micron lasers are also very useful for detecting key meteorological data over long distances through the air. Not to mention that they are highly effective in the processing of various industrial materials.

Replacing a cop with a detour

To create a 2 micron fibre-laser, light is usually injected into an optical-fibre ring containing a gain region which amplifies 2 micron light. The light circulates in the ring, passing through the gain region many times thus gaining more and more power, until becoming a laser. For optimal operation, these systems include a costly component called isolator, which forces the light to circulate in a single direction.

At PHOSL, researchers built a thulium-doped fibre laser that works without an isolator. Their idea was to connect the fibres differently, to steer light instead of stopping it.

“We plug a kind of deviation that redirects the light heading in the wrong direction, putting it back on track”, said Camille Brès. This means no more need for the isolator, whose job is to stop light moving in the wrong direction, sort of like a traffic cop. “We replaced the traffic cop with a detour,” said Svyatoslav Kharitonov, the article's lead author.

Higher quality laser

The new system not only proved to be less expensive than more traditional ones, it also showed it could generate a higher quality laser light. The explanation is as follows: the laser output gets purified because light interacts with itself in a very special way, thanks to the amplifying fibre's composition and dimensions, and the high power circulating in this atypical laser architecture.

“While the association of amplifying fibres and high power usually weakens traditional lasers performance, it actually improves the quality of this laser, thanks to our specific architecture”, said Svyatoslav Kharitonov.

###

Publication: Light: Science & Applications, Isolator-free unidirectional thulium doped fibre laser

Media Contact

Camille Bres
camille.bres@epfl.ch
41-216-937-866

 @EPFL_en

http://www.epfl.ch/index.en.html 

Media Contact

Camille Bres EurekAlert!

All latest news from the category: Process Engineering

This special field revolves around processes for modifying material properties (milling, cooling), composition (filtration, distillation) and type (oxidation, hydration).

Valuable information is available on a broad range of technologies including material separation, laser processes, measuring techniques and robot engineering in addition to testing methods and coating and materials analysis processes.

Back to home

Comments (0)

Write a comment

Newest articles

“Nanostitches” enable lighter and tougher composite materials

In research that may lead to next-generation airplanes and spacecraft, MIT engineers used carbon nanotubes to prevent cracking in multilayered composites. To save on fuel and reduce aircraft emissions, engineers…

Trash to treasure

Researchers turn metal waste into catalyst for hydrogen. Scientists have found a way to transform metal waste into a highly efficient catalyst to make hydrogen from water, a discovery that…

Real-time detection of infectious disease viruses

… by searching for molecular fingerprinting. A research team consisting of Professor Kyoung-Duck Park and Taeyoung Moon and Huitae Joo, PhD candidates, from the Department of Physics at Pohang University…

Partners & Sponsors