Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Searching for the perfect laser beam

13.05.2015

Current research in the area of laser beam cutting is focused on increasing expertise in forming fiber-guided laser beams for sheet metal cutting and transferring that knowledge to damage-free glass cutting in the display industry as well as water-jet-guided precision cutting of small parts.

As part of the EU’s HALO project (“High power Adaptable Laser beams for materials processing”), scientists at the Fraunhofer Institute for Laser Technology ILT are working on distributing the laser beam’s intensity in a way that meets the highest quality requirements while conserving resources. The project results will be presented at the LASER World of Photonics 2015 in Munich.


Simulated filaments and ablation under variation of the focus position (picture detail: enlarged removal profile).

Source: Fraunhofer ILT, Aachen


Analyzing the cutting process using high-speed videography.

Source: Fraunhofer ILT, Aachen

Today’s lasers for cutting applications are the best-selling industrial laser beam sources worldwide. Current analyses estimate that these lasers have roughly 50 percent of the market, with the most dominant application being the precise, flexible and highly productive 2D cutting used to produce nearly any contour in sheet metal blanks. At the same time, completely new cutting methods – for instance, perforations or the precise shaping of glass displays for mobile devices – are on the verge of entering industrial production.

When it comes to cutting sheet metal, the laser is a well-established tool. Laser performance of up to 8 kW is the industrial technology standard and even permits the cutting of metal sheets up to 50 mm thick. In recent years, in addition to 2D applications, 3D machining of shaped components has been increasing across the board, in part because of the extensive use of the difficult-to-machine, high-strength, press-hardened steel, particularly in the field of car body engineering.

The laser tool has demonstrated its suitability for cutting other materials – such as semiconductors, glass, plastics and composite materials – and has already been introduced in the first applications. Tool wear, which can lead to decreased quality when using conventional cutting methods, does not occur with laser cutting. However, the cut edges of laser-machined components are still rougher than those of milled metal components, for example. This is partly because the laser beam often does not have the right form needed to achieve the best result for the application in question.

Optimization potential for laser cutting

A typical laser beam possesses a very high intensity at its center, which falls away in a bell shape to the sides. But a laser beam with such a Gaussian intensity distribution is not necessarily the ideal tool for every application. For example, while this beam distribution is suitable for quickly cutting a sheet 1 mm thick at a relatively high quality, a sheet with a thickness of 1 cm requires a broader beam with greater intensity distribution at the edges. The latest research activities are focused on defining the right laser beam for cutting material of various types and thicknesses and tapping the resulting potential.

Better cutting quality, higher machining rate and profitability

This is where the EU’s HALO project (“High power Adaptable Laser beams for materials processing”) comes in. Since September 2012, an international consortium consisting of nine research institutes and industrial companies – including TRUMPF and Synova – has been working to develop application-specific beam formations. Under the leadership of Gooch & Hausego Ltd, the project participants are customizing the laser beam’s intensity distribution for each individual use case. Ultimately, the laser systems are to be equipped so that users can perform practical tests. Experts from the Fraunhofer ILT see enormous potential in this regarding cost cutting and processing speed, even as product quality improves.

Adaptive beam shapes

Fraunhofer ILT’s Macro Joining and Cutting group and the Modeling and Simulation group have been studying laser cutting for more than 25 years. In their work, the researchers apply sophisticated diagnostic methods (high-speed videography of the cutting process, streak image technology for melt flow analysis, and schlieren technique for visualizing the flow of cutting gas) and evaluation methods (meta-modelling, QuCut simulation of ripples). The scientists continuously deepen their understanding of this topic and apply appropriate laser methods for the widest range of cutting tasks. Now, as part of the HALO project, selected applications will be used to examine how the laser beam should be constructed to achieve optimal cutting results. Observing the cutting dynamics and the formation of ripples and adherent dross is also relevant.

Using simulation to achieve the perfect laser beam

Fraunhofer ILT’s Modeling and Simulation group is contributing significantly to these efforts by applying findings from computer simulations to help optimize laser processes. The group first simulates the cutting processes on the computer, before calculating the intensity distribution of the ideal laser beam for the individual application. It then designs the optical components based on this information.

The results of the HALO project will presented to the public for the first time as part of the “European Research on Laser Based Technologies” Forum at the LASER World of Photonics 2015:

Prof. Wolfgang Schulz, Nonlinear Dynamics of Laser Processing NLD, RWTH Aachen University
“HALO – Real Time Adjustment of Laserbeam Properties for Optimum Process Results”
Hall A2, Stand 250
June 25, 2015, from 13:00 to 13:20 hours

In addition, Fraunhofer ILT experts will be showing laser beam cutting processes for different materials in the macro and micro area as well as simulations of these processes at the at the LASER World of Photonics (Munich, June 22 – 25, 2015), Fraunhofer Joint Stand – Hall A3, Stand 121.


Contact

Prof. Wolfgang Schulz
Nonlinear Dynamics of Laser Processing NLD, RWTH Aachen University
Telephone +49 241 8906-204
wolfgang.schulz@ilt.fraunhofer.de

Dr. Dirk Petring
Head of the Macro Joining and Cutting Group
Telephone +49 241 8906-210
dirk.petring@ilt.fraunhofer.de

Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Weitere Informationen:

http://www.ilt.fraunhofer.de
http://www.world-of-photonics.com/supporting-program.html

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

More articles from Process Engineering:

nachricht Harder 3D-printed tools – Researchers from Dresden introduce new process for hardmetal industry
11.10.2018 | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

nachricht Flying High with VCSEL Heating
04.10.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

How Humans and Machines Navigate Complex Situations

19.11.2018 | Science Education

Finding plastic litter from afar

19.11.2018 | Ecology, The Environment and Conservation

Channels for the Supply of Energy

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>