Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research project AutoAdd: Paving the way for additive manufacturing for the automotive industry

22.11.2018

Five companies and two research institutes were involved in one of the most exciting technical issues in production. Coordinated by Daimler AG and within the framework of the BMBF funding initiative “Photonic Process Chains”, these project partners examined the “Integration of Additive Manufacturing Processes in Automobile Series Production – AutoAdd”. They focused on the metallic, additive manufacturing process developed at the Fraunhofer Institute for Laser Technology ILT in Aachen, Germany: Laser Powder Bed Fusion (LPBF), also known as Selective Laser Melting (SLM).

The German Federal Ministry of Education and Research (BMBF) wants to literally bring light into production under the term “Photonic Process Chains”.


Test piece, with supports removed with a wet-chemical process.

© Fraunhofer ILT, Aachen, Germany


Additive Manufacturing factory design of the future.

© TRUMPF, Ditzingen, Germany

Research projects are to integrate photon-based manufacturing processes such as metal 3D printing into product planning processes. The project aims to develop flexible, hybrid manufacturing conceptual designs, which the industry can use to produce individualized and complex products more efficiently than before.

Hybrid process chain to reduce unit costs

Of the 14 joint projects within the funding initiative, the AutoAdd project aimed to make it easier for the automotive industry to use additive manufacturing within three years.

The project partners focused on integrating the LPBF process chain in the automotive mass production environment to create a hybrid process chain and, thus, to reduce unit costs.

The BMW Group and Daimler defined the requirements for the additive process chain, which the high-tech company TRUMPF and research institute Fraunhofer ILT used to develop various LPBF plant and finishing conceptual designs.

The result was potentially production-ready optical designs as well as a modular system architecture, which, for example, enables the use of multiple beam sources and a so-called interchangeable cylinder principle.

In addition, the project team developed promising automatable post-processing concepts, including removal of support structures, and analyzed novel scalable materials produced by GKN.

Finally, the Karlsruhe Institute of Technology (KIT) evaluated the new factory designs: Using a simulation model, the engineers of the wbk Institute for Production Science visualized an exemplary, conventional process chain, in which they were able to design various possible LPBF plant concepts. With methods such as cost or benchmark analyzes, they were able to compare the new approaches from a technical and economic point of view with previous ones.

Additive mass manufacturing made possible

The results of the three-year joint project are quite impressive: Since modular cylinders and the use of wet-chemical immersion baths can now be used to remove, batchwise, components in the post-processing step, the entire process chain can be automated and non-productive time saved.

This can increase the overall profitability. The AutoAdd project team has also developed common metrics for evaluating LPBF manufacturing equipment and identified them for the most popular equipment manufacturers as part of a large-scale benchmarking exercise.

By using standardized benchmark jobs with different test specimens, industrial users can now calculate transferable key figures with which they will be able to find the most economical system for their purposes.

In addition, a fundamental step was taken: One of the most important points needed to make additive manufacturing technology ready for series production – the reproducibility of the mechanical properties – was demonstrated and evaluated in several state-of-the-art facilities. Integrating an economic additive process chain in automotive mass production can now be considered possible after the end of the project.

From an academic point of view, the research project also brought about positive effects: Content emerged from AutoAdd for four dissertations, and the knowledge thus gained can also be used for lectures. Moreover, in 2019 there will be another project, partly based on the present results, dealing with the line-integration of additive manufacturing processes to implement the designed additive process chain.

Research project »Integration of Additive Manufacturing Processes in Automobile Production -AutoAdd«

Project partners:

- Bayerische Motoren Werke AG, Munich, Germany
- Daimler AG, Ulm, Germany
- Fraunhofer Institute for Laser Technology ILT, Aachen, Germany
- GKN Sinter Metals Engineering GmbH, Radevormwald, Germany
- Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- netfabb GmbH, Lupburg, Germany
- TRUMPF Laser- und Systemtechnik GmbH, Ditzingen, Germany

Project period: June 1, 2015 to May 31, 2018
Project volume: €3.37 million, (about a 57 percent share of funding from the Federal Ministry of Education and Research BMBF).

Wissenschaftliche Ansprechpartner:

Tobias Schmithüsen
Group Laser Powder Bed Fusion
Telephone +49 241 8906-568
tobias.schmithuesen@ilt.fraunhofer.de

Weitere Informationen:

https://www.ilt.fraunhofer.de/en
https://www.photonikforschung.de/projekte/photonische-prozessketten/projekt/auto...

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

More articles from Process Engineering:

nachricht A water treatment breakthrough, inspired by a sea creature
27.11.2018 | Yale University

nachricht Harder 3D-printed tools – Researchers from Dresden introduce new process for hardmetal industry
11.10.2018 | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Innovative Infrared heat reduces energy consumption in coating packaging for food

12.12.2018 | Trade Fair News

New Foldable Drone Flies through Narrow Holes in Rescue Missions

12.12.2018 | Information Technology

Obtaining polyester from plant oil

12.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>