Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research project AutoAdd: Paving the way for additive manufacturing for the automotive industry

22.11.2018

Five companies and two research institutes were involved in one of the most exciting technical issues in production. Coordinated by Daimler AG and within the framework of the BMBF funding initiative “Photonic Process Chains”, these project partners examined the “Integration of Additive Manufacturing Processes in Automobile Series Production – AutoAdd”. They focused on the metallic, additive manufacturing process developed at the Fraunhofer Institute for Laser Technology ILT in Aachen, Germany: Laser Powder Bed Fusion (LPBF), also known as Selective Laser Melting (SLM).

The German Federal Ministry of Education and Research (BMBF) wants to literally bring light into production under the term “Photonic Process Chains”.


Test piece, with supports removed with a wet-chemical process.

© Fraunhofer ILT, Aachen, Germany


Additive Manufacturing factory design of the future.

© TRUMPF, Ditzingen, Germany

Research projects are to integrate photon-based manufacturing processes such as metal 3D printing into product planning processes. The project aims to develop flexible, hybrid manufacturing conceptual designs, which the industry can use to produce individualized and complex products more efficiently than before.

Hybrid process chain to reduce unit costs

Of the 14 joint projects within the funding initiative, the AutoAdd project aimed to make it easier for the automotive industry to use additive manufacturing within three years.

The project partners focused on integrating the LPBF process chain in the automotive mass production environment to create a hybrid process chain and, thus, to reduce unit costs.

The BMW Group and Daimler defined the requirements for the additive process chain, which the high-tech company TRUMPF and research institute Fraunhofer ILT used to develop various LPBF plant and finishing conceptual designs.

The result was potentially production-ready optical designs as well as a modular system architecture, which, for example, enables the use of multiple beam sources and a so-called interchangeable cylinder principle.

In addition, the project team developed promising automatable post-processing concepts, including removal of support structures, and analyzed novel scalable materials produced by GKN.

Finally, the Karlsruhe Institute of Technology (KIT) evaluated the new factory designs: Using a simulation model, the engineers of the wbk Institute for Production Science visualized an exemplary, conventional process chain, in which they were able to design various possible LPBF plant concepts. With methods such as cost or benchmark analyzes, they were able to compare the new approaches from a technical and economic point of view with previous ones.

Additive mass manufacturing made possible

The results of the three-year joint project are quite impressive: Since modular cylinders and the use of wet-chemical immersion baths can now be used to remove, batchwise, components in the post-processing step, the entire process chain can be automated and non-productive time saved.

This can increase the overall profitability. The AutoAdd project team has also developed common metrics for evaluating LPBF manufacturing equipment and identified them for the most popular equipment manufacturers as part of a large-scale benchmarking exercise.

By using standardized benchmark jobs with different test specimens, industrial users can now calculate transferable key figures with which they will be able to find the most economical system for their purposes.

In addition, a fundamental step was taken: One of the most important points needed to make additive manufacturing technology ready for series production – the reproducibility of the mechanical properties – was demonstrated and evaluated in several state-of-the-art facilities. Integrating an economic additive process chain in automotive mass production can now be considered possible after the end of the project.

From an academic point of view, the research project also brought about positive effects: Content emerged from AutoAdd for four dissertations, and the knowledge thus gained can also be used for lectures. Moreover, in 2019 there will be another project, partly based on the present results, dealing with the line-integration of additive manufacturing processes to implement the designed additive process chain.

Research project »Integration of Additive Manufacturing Processes in Automobile Production -AutoAdd«

Project partners:

- Bayerische Motoren Werke AG, Munich, Germany
- Daimler AG, Ulm, Germany
- Fraunhofer Institute for Laser Technology ILT, Aachen, Germany
- GKN Sinter Metals Engineering GmbH, Radevormwald, Germany
- Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- netfabb GmbH, Lupburg, Germany
- TRUMPF Laser- und Systemtechnik GmbH, Ditzingen, Germany

Project period: June 1, 2015 to May 31, 2018
Project volume: €3.37 million, (about a 57 percent share of funding from the Federal Ministry of Education and Research BMBF).

Wissenschaftliche Ansprechpartner:

Tobias Schmithüsen
Group Laser Powder Bed Fusion
Telephone +49 241 8906-568
tobias.schmithuesen@ilt.fraunhofer.de

Weitere Informationen:

https://www.ilt.fraunhofer.de/en
https://www.photonikforschung.de/projekte/photonische-prozessketten/projekt/auto...

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

More articles from Process Engineering:

nachricht Adhesive Process Developed for Shingle Cell Technology
09.01.2019 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Seawater turns into freshwater through solar energy: A new low-cost technology
08.01.2019 | Politecnico di Torino

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Scientists discover new 'architecture' in corn

21.01.2019 | Life Sciences

Broadband achromatic metalens focuses light regardless of polarization

21.01.2019 | Physics and Astronomy

Nuclear actin filaments determine T helper cell function

21.01.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>