Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research project AutoAdd: Paving the way for additive manufacturing for the automotive industry

22.11.2018

Five companies and two research institutes were involved in one of the most exciting technical issues in production. Coordinated by Daimler AG and within the framework of the BMBF funding initiative “Photonic Process Chains”, these project partners examined the “Integration of Additive Manufacturing Processes in Automobile Series Production – AutoAdd”. They focused on the metallic, additive manufacturing process developed at the Fraunhofer Institute for Laser Technology ILT in Aachen, Germany: Laser Powder Bed Fusion (LPBF), also known as Selective Laser Melting (SLM).

The German Federal Ministry of Education and Research (BMBF) wants to literally bring light into production under the term “Photonic Process Chains”.


Test piece, with supports removed with a wet-chemical process.

© Fraunhofer ILT, Aachen, Germany


Additive Manufacturing factory design of the future.

© TRUMPF, Ditzingen, Germany

Research projects are to integrate photon-based manufacturing processes such as metal 3D printing into product planning processes. The project aims to develop flexible, hybrid manufacturing conceptual designs, which the industry can use to produce individualized and complex products more efficiently than before.

Hybrid process chain to reduce unit costs

Of the 14 joint projects within the funding initiative, the AutoAdd project aimed to make it easier for the automotive industry to use additive manufacturing within three years.

The project partners focused on integrating the LPBF process chain in the automotive mass production environment to create a hybrid process chain and, thus, to reduce unit costs.

The BMW Group and Daimler defined the requirements for the additive process chain, which the high-tech company TRUMPF and research institute Fraunhofer ILT used to develop various LPBF plant and finishing conceptual designs.

The result was potentially production-ready optical designs as well as a modular system architecture, which, for example, enables the use of multiple beam sources and a so-called interchangeable cylinder principle.

In addition, the project team developed promising automatable post-processing concepts, including removal of support structures, and analyzed novel scalable materials produced by GKN.

Finally, the Karlsruhe Institute of Technology (KIT) evaluated the new factory designs: Using a simulation model, the engineers of the wbk Institute for Production Science visualized an exemplary, conventional process chain, in which they were able to design various possible LPBF plant concepts. With methods such as cost or benchmark analyzes, they were able to compare the new approaches from a technical and economic point of view with previous ones.

Additive mass manufacturing made possible

The results of the three-year joint project are quite impressive: Since modular cylinders and the use of wet-chemical immersion baths can now be used to remove, batchwise, components in the post-processing step, the entire process chain can be automated and non-productive time saved.

This can increase the overall profitability. The AutoAdd project team has also developed common metrics for evaluating LPBF manufacturing equipment and identified them for the most popular equipment manufacturers as part of a large-scale benchmarking exercise.

By using standardized benchmark jobs with different test specimens, industrial users can now calculate transferable key figures with which they will be able to find the most economical system for their purposes.

In addition, a fundamental step was taken: One of the most important points needed to make additive manufacturing technology ready for series production – the reproducibility of the mechanical properties – was demonstrated and evaluated in several state-of-the-art facilities. Integrating an economic additive process chain in automotive mass production can now be considered possible after the end of the project.

From an academic point of view, the research project also brought about positive effects: Content emerged from AutoAdd for four dissertations, and the knowledge thus gained can also be used for lectures. Moreover, in 2019 there will be another project, partly based on the present results, dealing with the line-integration of additive manufacturing processes to implement the designed additive process chain.

Research project »Integration of Additive Manufacturing Processes in Automobile Production -AutoAdd«

Project partners:

- Bayerische Motoren Werke AG, Munich, Germany
- Daimler AG, Ulm, Germany
- Fraunhofer Institute for Laser Technology ILT, Aachen, Germany
- GKN Sinter Metals Engineering GmbH, Radevormwald, Germany
- Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- netfabb GmbH, Lupburg, Germany
- TRUMPF Laser- und Systemtechnik GmbH, Ditzingen, Germany

Project period: June 1, 2015 to May 31, 2018
Project volume: €3.37 million, (about a 57 percent share of funding from the Federal Ministry of Education and Research BMBF).

Wissenschaftliche Ansprechpartner:

Tobias Schmithüsen
Group Laser Powder Bed Fusion
Telephone +49 241 8906-568
tobias.schmithuesen@ilt.fraunhofer.de

Weitere Informationen:

https://www.ilt.fraunhofer.de/en
https://www.photonikforschung.de/projekte/photonische-prozessketten/projekt/auto...

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

More articles from Process Engineering:

nachricht NRL develops laser processing method to increase efficiency of optoelectronic devices
16.04.2019 | Naval Research Laboratory

nachricht Hollow structures in 3D
29.03.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>