Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eagle eyes detect flaws in paper

01.02.2002


Today`s machines produce paper so rapidly that visual quality control is stretched to its limits. New automated systems with cameras and image analysis algorithms manage this flood of paper with no problem - they can even tackle the job with patterned wood and textiles.



The fastest papermaking machine in the world produces a roll of paper approximately 10 meters wide at the rate of 100 kilometers per hour. In less than 20 seconds the paper would cover an area the size of a soccer field. Impossible to visually inspect such a flood of paper for flaws. In fact, the slower pace of traditional quality controls using trained personnel often leads to a bottleneck in the entire production process. Automated image analysis systems can perform the task considerably faster and, moreover, the data they gather can be fed back directly to control the production process. The Fraunhofer Institute for Industrial Mathematics ITWM has developed a quality control system known as SPOT. It is capable of checking two and half meters of paper per second, using one camera for every meter of its width. The system identifies imperfections in paper such as glossy patches, scratches, perforations and indentations less than one millimeter in size. A further advantage of the system is that SPOT can be operated using standard PCs and expanded modularly as required.

"The hardware components are only one aspect of the system," explains IT specialist Markus Rauhut. "The attainable speed and precision of quality control depend, above all, on the algorithms of the image processor." The edges of the paper must first be identified, so that they are not registered as flaws. Then, it is important to distinguish essential image contents from nonessential and separate them. Otherwise, with such a huge quantity of paper, the amount of data gathered would be simply overwhelming. Various electronic filters extract typical flaws, which are then reproduced in a new image as "regions of interest". What constitutes a flaw and its permissible dimensions is defined at the start. This reduced-data image can be viewed immediately or be analyzed statistically as part of a defect report. Finally, individual sheets of paper can be automatically sorted and segregated on the basis of their quality.


What works well with uniformly colored paper requires much greater computational effort for wood and textiles. "If flaws in patterns are to be optically analyzed at high speed, it is essential that the existing algorithms be further simplified, despite their already optimized design," comments Rauhut, explaining the challenge. "Our TASQ and FOQUS systems would be suitable for quality control in these areas - but they have to be `trained` first. All three surpass the speed and precision of the human eye with no problem."

Dr. Johannes Ehrlenspiel | alphagalileo

More articles from Process Engineering:

nachricht Harder 3D-printed tools – Researchers from Dresden introduce new process for hardmetal industry
11.10.2018 | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

nachricht Flying High with VCSEL Heating
04.10.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>