Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New way to make nanoscale circuits is discovered

24.08.2004


An electron microscope image of a junction between bulk strontium titanate (left) and oxygen-deficient strontium titanate (right). Each bright-orange blob is a cluster of "oxygen vacancies" -- areas of missing atoms. The larger red dots are the strontium atoms and the smaller ones are the titanium atoms. Cornell Center for Materials Research


Time is fast running out for the semiconductor industry as transistors become ever smaller and their insulating layers of silicon dioxide, already only atoms in thickness, reach maximum shrinkage. In addition, the thinner the silicon layer becomes, the greater the amount of chemical dopants that must be used to maintain electrical contact. And the limit here also is close to being reached.

But a Cornell University researcher has caused an information industry buzz with the discovery that it is possible to precisely control the electronic properties of a complex oxide material -- a possible replacement for silicon insulators -- at the atomic level. And this can be done without chemicals. Instead, the dopant is precisely nothing.

In a paper in a recent issue of Nature (Aug. 5, 2004), David Muller, associate professor of applied and engineering physics at Cornell, and his collaborator, Harold Hwang of the University of Tokyo, report that by removing oxygen atoms from layers in thin films of the oxide strontium titanate, they can precisely control the conducting ability of the material by creating empty spaces, or vacancies, that act as electron-donating dopants. And they have used a scanning transmission electron microscope (STEM) to tell exactly where the missing atoms are in the material.



Across the semiconductor industry, such complex oxides are being sought as a replacement for silicon. The roadblock is that all the oxides tested easily lose a few oxygen atoms, making them leaky and defective when exposed to electric fields, typically stronger than those inside a lightning bolt.

"The important parts of the work are actually being able to see vacancies buried inside the material," says Muller. "From a materials analysis point of view, that’s very important. The reason is that missing atoms can change the properties of a material very dramatically." He adds, "We have been able to show that we can stop on a dime in controlling where you put these vacancies."

In an accompanying commentary to the Nature article called "The value of seeing nothing," Jochen Mannhart of the University of Augsburg, Germany, and Darrell G. Schlom of Pennsylvania State University, observe that the research by Muller and his colleagues "greatly broadens the options available for manipulating the electronic properties of oxides" at the nanometer scale. A nanometer is the width of three silicon atoms.

Strontium titanate is a titanium-containing material, known commercially as Lustigem, that was once popular as a diamond substitute. It is the simplest of the complex oxides and the one that can be made in the largest quantities. "The big problem with doing any work with oxides is that they form vacancies very easily," says Muller. "And generally this was viewed as a bad thing because the vacancies acted as dopants that couldn’t be controlled."

In his Tokyo laboratory, Hwang used a popular research technique called pulsed laser ablation, in which thin films of oxide materials are deposited layer by layer in a vacuum chamber. The atoms were deposited on the material in dribbles; in fact one laser blast deposited only 1/20th of a layer of the material. In this way layers of the material were built up, some only one atom thick. When Hwang decided to deposit a layer without atoms -- with vacancies -- he reduced the oxygen pressure inside the vacuum chamber. When atoms were laid down, says Muller, the process happened at great speed so that the atoms were "frozen into place" and thus lacked the energy to break their bonds and move into the next layer.

At Cornell, Muller used the STEM to identify exactly where each vacancy -- that is, the absence of one atom -- was in the layers within the strontium titanate. The emptiness itself was invisible, but the clusters of atoms around the vacancy caused a telltale excess scattering of electrons.

"This is the first step in making devices from strontium titanate," says Muller. "The question we now have to answer is, what happens if you pass huge currents through these materials?" Generally, though, he says, the ability to detect vacancies at the single-atom level is going to be very important for "debugging" these new semiconductor materials "because the problem is that vacancies at such low concentrations don’t show up in many of the traditional physical characterization methods."

Does this research mean that a new era of manipulating the electronic properties of oxides for semiconductors at the nano scale is close at hand? "I think we can do it now much better than we could before," says Muller. "We can tell what’s happening to every atom in the system, whereas before you knew on average if things worked out or if they didn’t. Now you can go out and identify the culprits at fault."

Muller and Hwang began their research at Bell Laboratories, Lucent Technologies. Their continuing research at Cornell was supported by the National Science Foundation-funded Cornell Center for Materials Research (CCMR). Their other collaborators on the Nature paper were John Grazul, co-manager of the Electron and Optical Microscopy Facility at CCMR; Naoyuki Nakagawa of the University of Tokyo; and Akira Ohtomo of Tohoku University, Japan.

David Brand | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Process Engineering:

nachricht Decontaminating pesticide-polluted water using engineered nanomaterial and sunlight
16.01.2020 | Institut national de la recherche scientifique - INRS

nachricht TUM Agenda 2030: Combining forces for additive manufacturing
09.10.2019 | Technische Universität München

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Lights, camera, action... the super-fast world of droplet dynamics

26.02.2020 | Power and Electrical Engineering

Lab-free infection test could eliminate guesswork for doctors

26.02.2020 | Life Sciences

Scientists develop algorithm for researching evolution of species with WGD

26.02.2020 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>