Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum dots see in the dark

15.06.2004


USC/UT ’Quantum Dot’ nanodevices promise improved night vision goggles, medical sensors and more



Researchers at the University of Southern California and the University of Texas at Austin have built and tested a device based on nanostructures called quantum dots that can sensitively detect infrared radiation in a crucial wavelength range. Quantum dot IR receptor unit.

The atmosphere is opaque to most infrared, but it is transparent for a narrow "window" between 8 and 12 microns. Night vision goggles, military target tracking devices and environmental monitors utilize this range of wavelengths.


Anupam Madhukar, holder of the Kenneth T. Norris Chair in the USC Viterbi School of Engineering with appointments in the departments of materials science, biomedical engineering and physics, says "a class of existing infrared detectors are based on what is called ’quantum well’ technology. But we have created a detector based on different physics--quantum dot physics--that works at least as well and has the potential to perform better."

Madhukar worked with Joe C. Campbell, who holds the Cockrell Family Regents Chair in the UT Austin College of Engineering’s department of electrical and computer engineering. The two engineers described the device in the April 24 issue of Applied Physics Letters.

The device uses self-assembled "quantum dots," island-like pyramidal structures made of semiconductors. Each dot has a core of indium arsenide surrounded by gallium arsenide and an indium-gallium arsenide alloy. A single dot is approximately 20 nanometers (2 millionths of a centimeter) in base size and about 4 nanometers in height.

The three-dimensional confinement of electrons within these structures creates unique, characteristic behavior. By using varying proportions of the materials and changing synthesis procedures, engineers can tailor quantum dots for use in lasers, detectors, optical amplifiers, transistors, tunneling diodes, and other devices.

"Quantum dots are emerging as the most viable semiconductor nanotechnology for future higher performance communication systems, biomedical imaging, environmental sensors, and infrared detection," said Madhukar.

Unlike their alternatives, quantum dot infrared detectors strongly absorb radiation shining perpendicular to the plane of an array of quantum dots.

By contrast, the alternate quantum well detectors don’t pick up radiation that shines straight down on them. To achieve this "necessitates additional processing steps," Madhukar said. This increases the cost of the well detectors.

When the engineers benchmarked the new device using standard tests, its detectivity was nearly 100 times higher than the previously reported peak for quantum dot systems. The new range is competitive with the corresponding values for the well-established quantum well infrared photo detectors.

"It is about an order of magnitude lower than a third technology, mercury-cadmium-telluride material based infrared detectors. These now provide the best available performance, but suffer from materials uniformity and long-term stability issues," said Campbell.

The researchers expect that placing the dot arrays in a configuration called a "resonant cavity," which traps the radiation and bounces it back and forth between mirroring walls, will make them more sensitive.



The U.S. Air Force Office of Scientific Research supported the research under the U.S. Department of Defense sponsored Multidisciplinary University Research Initiatives (MURI) Program in Nanoscience.

Contacts: A. Madhukar, USC, 213-740-4323; Joe C. Campbell, UT Austin, 512-471-9669]

Eric Mankin | EurekAlert!
Further information:
http://www.usc.edu/

More articles from Process Engineering:

nachricht New technology for ultra-smooth polymer films
28.06.2018 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Diamond watch components
18.06.2018 | Schweizerischer Nationalfonds SNF

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>