Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum dots see in the dark

15.06.2004


USC/UT ’Quantum Dot’ nanodevices promise improved night vision goggles, medical sensors and more



Researchers at the University of Southern California and the University of Texas at Austin have built and tested a device based on nanostructures called quantum dots that can sensitively detect infrared radiation in a crucial wavelength range. Quantum dot IR receptor unit.

The atmosphere is opaque to most infrared, but it is transparent for a narrow "window" between 8 and 12 microns. Night vision goggles, military target tracking devices and environmental monitors utilize this range of wavelengths.


Anupam Madhukar, holder of the Kenneth T. Norris Chair in the USC Viterbi School of Engineering with appointments in the departments of materials science, biomedical engineering and physics, says "a class of existing infrared detectors are based on what is called ’quantum well’ technology. But we have created a detector based on different physics--quantum dot physics--that works at least as well and has the potential to perform better."

Madhukar worked with Joe C. Campbell, who holds the Cockrell Family Regents Chair in the UT Austin College of Engineering’s department of electrical and computer engineering. The two engineers described the device in the April 24 issue of Applied Physics Letters.

The device uses self-assembled "quantum dots," island-like pyramidal structures made of semiconductors. Each dot has a core of indium arsenide surrounded by gallium arsenide and an indium-gallium arsenide alloy. A single dot is approximately 20 nanometers (2 millionths of a centimeter) in base size and about 4 nanometers in height.

The three-dimensional confinement of electrons within these structures creates unique, characteristic behavior. By using varying proportions of the materials and changing synthesis procedures, engineers can tailor quantum dots for use in lasers, detectors, optical amplifiers, transistors, tunneling diodes, and other devices.

"Quantum dots are emerging as the most viable semiconductor nanotechnology for future higher performance communication systems, biomedical imaging, environmental sensors, and infrared detection," said Madhukar.

Unlike their alternatives, quantum dot infrared detectors strongly absorb radiation shining perpendicular to the plane of an array of quantum dots.

By contrast, the alternate quantum well detectors don’t pick up radiation that shines straight down on them. To achieve this "necessitates additional processing steps," Madhukar said. This increases the cost of the well detectors.

When the engineers benchmarked the new device using standard tests, its detectivity was nearly 100 times higher than the previously reported peak for quantum dot systems. The new range is competitive with the corresponding values for the well-established quantum well infrared photo detectors.

"It is about an order of magnitude lower than a third technology, mercury-cadmium-telluride material based infrared detectors. These now provide the best available performance, but suffer from materials uniformity and long-term stability issues," said Campbell.

The researchers expect that placing the dot arrays in a configuration called a "resonant cavity," which traps the radiation and bounces it back and forth between mirroring walls, will make them more sensitive.



The U.S. Air Force Office of Scientific Research supported the research under the U.S. Department of Defense sponsored Multidisciplinary University Research Initiatives (MURI) Program in Nanoscience.

Contacts: A. Madhukar, USC, 213-740-4323; Joe C. Campbell, UT Austin, 512-471-9669]

Eric Mankin | EurekAlert!
Further information:
http://www.usc.edu/

More articles from Process Engineering:

nachricht Copper oxide photocathodes: laser experiment reveals location of efficiency loss
10.05.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie

nachricht NIST research sparks new insights on laser welding
02.05.2019 | National Institute of Standards and Technology (NIST)

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Summit charts a course to uncover the origins of genetic diseases

22.05.2019 | Life Sciences

New study finds distinct microbes living next to corals

22.05.2019 | Life Sciences

Stellar waltz with dramatic ending

22.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>