Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Developing tools for reliable ’gene chip’ measurements

25.05.2004


Microarrays, sometimes called "gene chip" devices, enable researchers to monitor the activities of thousands of genes from a single tissue sample simultaneously, identifying patterns that may be novel indicators of disease status. But generating consistent, verifiable results is difficult because of a lack of standards to validate these analyses, scientists from the National Institute of Standards and Technology (NIST) and collaborators warn in the May 20 online issue of Clinical Chemistry.



Microarrays are keychain-sized devices with as many as several million tiny spots, each of which examines genes of interest simultaneously using minute sample volumes. This highly sensitive technology is relatively new, and standard procedures to ensure the reliability and comparability of results are only beginning to emerge. For instance, results can change as a result of differences in how tissues are collected and processed; variations in how the molecules are counted, attached to substrates and labeled for detection; deviations from recommended protocols by lab personnel; and malfunctioning or miscalibrated equipment. Such variations need to be controlled before this technology can be used reliably in clinical settings and in devices requiring regulatory approval, according to the paper.

As a first step toward addressing reliability issues, a consortium co-led by NIST and industry is developing standards that will satisfy needs identified at a 2003 workshop. At the workshop, organized and hosted by NIST, leaders in the microarray field from industry, government and universities recommended the development of a well-characterized set of ribonucleic acid (RNA) molecules whose identity and concentration are known. RNA is an important product of gene activity. Users will be able to validate the results of gene chip analyses by adding such a reference material to their samples and comparing the measured values to what would be expected for them. Such a reference material also will enable technology developers and researchers to assess the performance of their assays.



The paper was co-authored by scientists from Genomic Health, Inc., Agilent Technologies, the U.S. Food and Drug Administration, and The Institute for Genome Research.

Laura Ost | NIST
Further information:
http://www.nist.gov/

More articles from Process Engineering:

nachricht New technology for ultra-smooth polymer films
28.06.2018 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Diamond watch components
18.06.2018 | Schweizerischer Nationalfonds SNF

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>