Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme "Ink" Shows Potential For Nanomanufacturing

23.04.2004


Experiment uses biomolecules to write on a gold substrate

Duke University engineers have demonstrated that enzymes can be used to create nanoscale patterns on a gold surface. Since many enzymes are already commercially available and well characterized, the potential for writing with enzyme "ink" represents an important advance in nanomanufacturing. This research was funded by the National Science Foundation through a Nanotechnology Interdisciplinary Research Initiative (NIRT) grant.

Enzymes are nature’s catalysts -- proteins that stimulate chemical reactions in the body and are used in a wide range of industrial processes, from wastewater treatment to cheese making to dissolving blood clots after heart attacks.

In their experiments, the engineers used an enzyme called DNase I as an "ink" in a process called dip-pen nanolithography -- a technique for etching or writing at the nanoscale level. The dip pen allowed them to inscribe precise stripes of DNase I ink on a gold plate, which they had previously coated with a thick forest of short DNA strands. The stripes of the enzyme were 100 nanometers wide -- about one-millionth the diameter of a human hair.

Once the researchers had created the stripes, they then activated the enzyme with a magnesium-containing solution. This changed the DNase I into a form that efficiently breaks down any DNA in its path. As a result, the team reports in the May 2004, issue of the Journal of the American Chemical Society, available online as of March 27, 2004, the stripes of activated enzyme carved out 400 nm wide "troughs" in the DNA coating.

"We were surprised that the enzyme ’ink’ worked so well, because it was simply deposited on the surface and could have washed away during the processing steps," says biomedical engineer Ashutosh Chilkoti of Duke’s Pratt School of Engineering, who leads the project.

Chilkoti credits much of the experiment’s success to the laboratory skills of Jinho Hyun, who was a post-doctoral fellow in his group, and who is now an assistant professor at Seoul National University. But this experiment was also an important proof of principle, says Chilkoti: until now, few researchers have explored biological substances for nanoscale manufacturing, and even fewer have taken the approach of putting down chemically active biomolecules on a surface.

"We wanted to see if we could steal functionality from biology to make the complex structures we need," says Chilkoti. The outcome, he says, was everything he and his colleagues could have hoped for: "In an afternoon, we inexpensively created a nanostructure that would have taken weeks to develop using expensive, traditional methods of etching circuits into chips."

Now that the team has demonstrated that enzymes can "subtract" from the substrate to make precise troughs, they envision many other possibilities. Instead of using enzymes that degrade DNA, for example, they could use other enzymes that link DNA strands together. That would allow them to make "additions" to the substrate, causing the DNA layer to grow thicker in certain places. Alternatively, they could use still other enzymes that make chemical changes in the DNA substrate itself, allowing them to build complex structures with "different colored bricks," as Chilkoti puts it.

The team could even do away with the DNA entirely, and use a different substrate, Chilkoti says. "We used DNA because it is pretty robust, because you can buy synthetic DNA strands off the shelf, and because there are lots of enzymes that work on it. But there is nothing unique about it for this kind of application."

"Enzymes have evolved to carry out an incredible variety of processes," comments team member Stephen Craig, a Duke chemist. "By harnessing the diverse power available in nature, it may be possible to selectively erase structures at one point, add structures at a second location, transform them from one state to another at a third location, and so on. The potential exists to create very small and very complex architectures."

"A lot more work is needed to optimize the process, but we feel this enzyme-inking technique has tremendous promise for wide applicability," says Chilkoti.

Enzyme-based nanomanufacturing is of interest because it could an incredibly versatile tool. This is critical because nanomanufacturing is at the heart of efforts to see if we can make new devices that are far smaller, cheaper, faster and better than existing devices," says Chilkoti

To date, dip-pen nanolithography has been primarily a bench top laboratory technique.

Scaling up the technique to truly make it a viable manufacturing technique will require new instrumental technology such as dippen lithography machines with multiple, articulated tips that can move independently to deposit several different types of enzymes. Chilkoti envisions machines that can work on a sheet of chips using different enzymes, so that the chips can be snapped apart after the enzyme inking and processing. Chilkoti notes that such machines are already being commercially developed, so the day might not be too far off when enzyme-based nanomanufacturing might be possible on an industrial scale.

M. Mitchell Waldrop | NSF
Further information:
http://www.nsf.gov/od/lpa
http://bme-www.egr.duke.edu/personal/chilkoti/research.html

More articles from Process Engineering:

nachricht TUM Agenda 2030: Combining forces for additive manufacturing
09.10.2019 | Technische Universität München

nachricht Copper oxide photocathodes: laser experiment reveals location of efficiency loss
10.05.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Liquifying a rocky exoplanet

A hot, molten Earth would be around 5% larger than its solid counterpart. This is the result of a study led by researchers at the University of Bern. The difference between molten and solid rocky planets is important for the search of Earth-like worlds beyond our Solar System and the understanding of Earth itself.

Rocky exoplanets that are around Earth-size are comparatively small, which makes them incredibly difficult to detect and characterise using telescopes. What...

Im Focus: Axion particle spotted in solid-state crystal

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted a famously elusive particle: The axion – first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics.

The team found signatures of axion particles composed of Weyl-type electrons (Weyl fermions) in the correlated Weyl semimetal (TaSe₄)₂I. At room temperature,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

How to control friction in topological insulators

14.10.2019 | Physics and Astronomy

The shelf life of pyrite

14.10.2019 | Earth Sciences

Shipment tracking for "fat parcels" in the body

14.10.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>