Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robot device dusts potential bombs for finger prints

20.04.2004


Police who need to dust suspicious packages for fingerprints could someday rely on a robotic device to do this dangerous work.


Bomb disposal robot with RAFFE attachment
Image: Kristian Dixon


Finger print samples obtained by RAFFE
Image: Kristian Dixon



The device, developed by scientists from U of T and the University of Calgary, offers a safe way to collect fingerprint evidence from packages that might be too dangerous for a human to approach. A study describing the development of the device, called a Robot Accessory for Fuming Fingerprint Evidence (RAFFE), appears in the March 2004 issue of the Journal of Forensic Sciences. "With the recent terrorist threats, police would want to collect as much evidence as possible," says lead author Kristian Dixon, a third-year U of T engineering science student. "But if a bomb were to go off while an officer was manually dusting the package, he could either lose his hands or his life."

Currently, police robots simply destroy suspicious packages - along with any fingerprint evidence. RAFFE consists of a small box with a heating element, cartridge of Superglue and short pipe. Using remote controls, police direct the robot to the package and heat the Superglue in the box. The glue produces fumes that are piped towards the package. The fumes, containing cyanoacrylate, react with the oils and moisture in the fingerprints, turning them white. The fingerprints can then be photographed using the robot’s high-definition camera prior to the safe disposal of the package. The study was funded by the Natural Sciences and Engineering


CONTACT:

Kristian Dixon, Division of Engineering Science, Faculty of Applied Science and Engineering, ph: (519) 884-5142 x364 or (519) 573-5152; e-mail: kristian.dixon@utoronto.ca

U of T Public Affairs, ph: (416) 978-6974; e-mail: nicolle.wahl@utoronto.ca

Nicolle Wahl | University of Toronto
Further information:
http://www.newsandevents.utoronto.ca/bin5/040419a.asp

More articles from Process Engineering:

nachricht Copper oxide photocathodes: laser experiment reveals location of efficiency loss
10.05.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie

nachricht NIST research sparks new insights on laser welding
02.05.2019 | National Institute of Standards and Technology (NIST)

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Uncovering hidden protein structures

18.06.2019 | Life Sciences

Monitoring biodiversity with sound: how machines can enrich our knowledge

18.06.2019 | Life Sciences

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>