Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spying on a Cell - New Nanosensors a Body Can Live With

31.03.2004


For two decades, chemists have been making great strides in analyzing the biological functions that drive living cells. But many biological substances still remain undetectable.




That will soon change, thanks to a biological sensor being developed by University of Arizona chemists. Their new sensor platform has many capabilities that current ones lack.

Most intracellular sensors are made from hard plastics (polymers). The plastic is formed into solid, nanometer-sized, BB-like beads, which are doped with chemicals. These chemicals make them sensitive to a variety of ions and molecules. But scientists can only detect intracellular compounds that react optically with these chemicals.


Current biological sensors have several other drawbacks. Imaging dyes and proteins, fiber optics sensors, and coated nano-sized beads can disrupt cellular processes. In addition, they sometimes break down chemically or can be toxic. They also can’t reveal the kinds of chemical processes occurring or their rates of reaction in real time. And they can’t detect large molecules, such as proteins.

"Our new technology takes advantage of some very specific and useful biology," said UA chemist Craig Aspinwall. "It’s the ability of ions, molecules or groups of molecules to interact with certain proteins. We can use those proteins to report the presence of specific ions and molecules."

Aspinwall takes an unconventional approach to constructing tiny devices that safely transport and hold these proteins within a cell.

He starts by making nanometer-sized hollow shells of phospholipids that self-assemble. The self-assembled phospholipids are then "polymerized," or chemically linked, to form the sensors. Since phospholipids are the major component of cell membranes, they are biocompatible. A hundred can be released inside a cell without affecting cellular functions. The shells’ hollow shape allows them to safely hold water-soluble — or even toxic — indicator dyes and enzymes that can be used to ferret out the details of chemistry inside living cells.

In short, chemists can select proteins that interact with specific ions, molecules or groups of molecules, stick them into nanoshell membranes, and send them inside the cell to sniff out specific substances.

"What we’re trying to do at this point is incorporate ion channels as detectors," Aspinwall said. An ion channel is a molecule that moves a specific kind of ion by opening or closing in response to the presence of that ion or certain other chemicals. When that ion or these chemicals move through the ion channel into the nanoshell, it modifies the ion channel protein. Scientists can detect that change by a variety of techniques.

Aspinwall’s group has monitored oxygen using the new sensor, and his team is also constructing a glucose sensor, which may help in fighting diabetes.

"Anything that interacts with a membrane protein or anything that can be transported by a membrane protein is a potential target," Aspinwall said. "This opens up an entirely new world of molecules that chemists can look at."

"What really makes our sensors novel is that, to my knowledge, we are the only group working with a functional, polymerized lipid," Aspinwall said. "There is no commercially available product like this. It has to be synthesized on this campus."

The late David O’Brien, who was also a UA chemist, laid the groundwork for this new technology when he began making self-assembing lipid polymers in his laboratory a decade ago. UA chemists working in his lab have created chemically and environmentally stable polymer lipids, which have made Aspinwall’s research possible.

These bio-friendly polymers can be exposed to chemicals and radiation, dehydrated and rehydrated, heated, or stored for long periods of time, yet remain intact.

Aspinwall will discuss this new technology today at the American Chemical Society national meeting in Anaheim, Calif

Lori Stiles | University of Arizona
Further information:
http://ali.opi.arizona.edu/cgi-bin/WebObjects/UANews.woa/wa/SRStoryDetails?ArticleID=8762

More articles from Process Engineering:

nachricht Harder 3D-printed tools – Researchers from Dresden introduce new process for hardmetal industry
11.10.2018 | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

nachricht Flying High with VCSEL Heating
04.10.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>