Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny machines need even tinier lubricants

30.03.2004


Tiny machines built as part of silicon chips are all around us, and their need for lubrication is the same as large machines such as automobile engines, but conventional lubricants, like oils, are too heavy for these micro electromechanical systems (MEMS), so Penn State researchers are looking to gases to provide thin films of slippery coating.

MEMS today are mostly found in automobile air bags as the sensor that marks sudden deceleration and triggers airbag use. They can also take the form of tiny motors that move mirrors to focus a beam of light, or tiny nozzles that provide minute droplets of ink in ink jet printers.

"Traditionally, the lubrication industry uses viscose liquids to lubricate – oils or oils and additives – to reduce friction and increase efficiency," says Dr. Seong H. Kim, assistant professor of chemical engineering. "However, oil-based lubricant use in MEMS causes a power dissipation that is unacceptable."



Because MEMS are so small, with parts about the width of a human hair, and exert so little force, from almost none to the equivalent of the Earth’s gravity on a thousand red blood cells, conventional lubricants simply do not work. Oil molecules are usually large and relatively heavy. They not only stop the MEMS dead in their tracks, but also cannot infiltrate the microscopic cracks and crevices of the machines.

The current trend in MEMS is to use solid lubricants -- thin-film coatings of diamond-like carbon or self-assembling monolayers of methylated or fluorocarbon compounds. While solids provide a thin enough layer, they do not always coat the entire mechanism. They are also subject to wear because of their thinness and are not self-healing or replenishing.

"The fact that the solid coatings work tells us that for lubrication, all we need is a thin film," Kim told attendees today (Mar. 29) at the 227th National Meeting of the American Chemical Society.

Kim and Dr. Kenneth Strawhecker, postdoctoral fellow in chemical engineering, investigated delivering a thin coating of liquid lubricant by condensing a gas onto the surface of the MEMS. The researchers investigated alcohols including ethanol, propanol, butanol and pentanol.

The researchers chose alcohols because they are both hydrophilic and hydrophobic, easily combining with water on one end and combining with other compounds on the other. At the incredibly low forces encountered in MEMS, alcohols, which are not generally considered good lubricants, work.

Solubility in water is an important characteristic in lubricating MEMS. Water is always present in the air as humidity and the water does condense on surfaces. For some devices, like the air bag sensor, water is why these MEMS are used only once. These sensors have two tiny strips of material that come into contact upon rapid deceleration. Any water on the strip surfaces causes the strips to stick in the closed mode. Surface tension of the water holds the material together in the same way two panes of glass with water between become stuck. However, alcohol as a lubricant would prevent water from causing the strips to attach.

"It might also be possible to use a gas delivered liquid thin film that would regenerate the sensors allowing recycling of the air bag mechanisms," says Kim.

The researchers tested the gas lubricants at various vapor pressures and find that they produce a thin film across a wide range. The small size of the alcohol molecules allows them to coat fine details of the tiny machines and the presence of gas around the MEMS makes the system self-repairing. As the thin layer wears away, more lubricant condenses to heal the area. The thin films do not interfere with either mechanical or electrical operation.


"The next research issue we have is how to encapsulate the MEMS so we can entrap the gas," says Kim. "A variety of delivery methods exist including possibly using a polymer that emits the alcohol as temperatures increase."

The researchers also want to look at other alcohols and other compounds as potential MEMS lubricants.


The National Science Foundation and the Pennsylvania State University supported this work.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Process Engineering:

nachricht A water treatment breakthrough, inspired by a sea creature
27.11.2018 | Yale University

nachricht Research project AutoAdd: Paving the way for additive manufacturing for the automotive industry
22.11.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>