Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using water as a lens to shrink chip dimensions

01.03.2004


Thanks in part to highly accurate measurements made by National Institute of Standards and Technology (NIST) researchers, semiconductor manufacturers will be able to pursue a new production method that will enable them to produce new generations of computer chips using existing equipment---saving the industry hundreds of millions of dollars.



Creating ever more powerful computer chips relies on being able to increasingly miniaturize the features on those chips. Industry had thought it might be nearing the end of the useful life of equipment that creates features using 193 nanometer (nm) wavelength light.

However, a new method called immersion lithography uses a thin layer of water like a lens to shorten the effective wavelengths of ultraviolet light used in patterning semiconductor chips. The method relies on the fact that light travels slower through water than air. The frequency of the light remains the same, so the distance between peaks (the wavelength) must shorten to compensate.


The method should enable manufacturers to use 193 nm equipment to create circuit lines and other features at least as small as 45 nm. Such a breakthrough allows manufacturers to create much more powerful chips while getting more life out of their current fabrication equipment, which can cost around $20 million per tool.

The industry began to take immersion lithography seriously about a year ago. With the support of International SEMATECH, the semiconductor industry’s R&D consortium, NIST scientists made highly accurate measurements of a property called refractive index, a measure of how much ultraviolet light at a wavelength of 193 nm bends when it moves from air to water. This new data helped enable the semiconductor industry to design immersion lithography systems.

NIST researchers described key results of their work at the International Society for Optical Engineering’s Microlithography 2004 conference held Feb. 23-28 in Santa Clara, Calif.

The researchers also are working with industry on new immersion fluids for 157 nm wavelength chipmaking tools, so that this equipment can produce features of 32 nm or below.

Scott Nance | EurekAlert!
Further information:
http://www.nist.gov/

More articles from Process Engineering:

nachricht Diamond watch components
18.06.2018 | Schweizerischer Nationalfonds SNF

nachricht Quick and safe laser joining of steel-aluminum mixed connections
05.06.2018 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>