Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers create chip-size version of widely used detector

13.02.2004


Researchers have created a portable, chip-size version of a detection system that is commonly used by industry and law enforcement to identify everything from agricultural toxins to DNA.



The miniature detector could move certain types of testing from the lab into the field, saving time and money while increasing security.

The team, which used a newly developed laser-processing technique to create the miniature detector, was supported by the National Science Foundation and led by a Purdue University engineer who conducted the work while he was at the University of California, Berkeley.


"Now we have a way of putting all of the critical components on one wafer," said Timothy D. Sands, the Basil S. Turner Professor of Engineering in the School of Materials Engineering and the School of Electrical and Computer Engineering at Purdue. "It’s much the same in concept as going from separate transistors to an integrated circuit that includes many transistors on a single chip."

Findings about the miniature detector are detailed in a paper that has been posted online and that will appear March 1 in Sensors and Actuators A: Physical, an international journal published in Amsterdam by Elsevier B.V.

The paper was written by Sands and the following researchers from UC-Berkeley: J. Alex Chediak and Zhongsheng Luo, graduate students in materials science and engineering; Jeonggi Seo, a graduate student in applied science and technology; Nathan Cheung, a professor of electrical engineering and computer science; and Luke P. Lee, a professor of bioengineering.

The traditional fluorescence detection system works by attaching a fluorescent dye to specific molecules in a substance and then shining a laser onto the substance. The laser light is absorbed by the dyed molecules, causing them to emit a certain color, which is picked up by a sensor. The detection work normally is done using bulky, stationary equipment in a laboratory.

The new device, however, fits on a centimeter-wide chip, promising the development of miniature detectors that can be used in the field. Such portable instruments would be useful for a wide range of applications, from biologists doing basic research to farmers testing crops for toxins.

To create the chips, the team used a technique invented by Sands, Cheung and former graduate student William Wong, now a researcher at the Palo Alto Research Center in Palo Alto, Calif. This technique, known as "laser liftoff," uses a powerful laser to selectively separate and transfer thin-film components from one substrate to another to build up the successive layers of a "system-on-a-chip."

"We use lasers to manipulate materials, either to grow them or to process them," said Sands, who specializes in heterogeneous integration, or making devices by combining entirely different materials in new ways. "We can transfer films of materials from one substrate to another, and then use this laser-based assembly process to build up complex systems made of materials from different classes that are not normally compatible."

Fluorescence detection is commonly used in industry and science.

"It’s the standard technique," Sands said. "The idea is that you tag a specific molecule or cell with a dye molecule that will emit light when it’s excited. Then you illuminate your subject that’s been tagged with the dye molecule, causing it to emit light at a longer wavelength."

The color of the laser is chosen to efficiently "excite" a specific dye. Shining a blue laser on a certain dye, for example, results in the emission of green light. A green laser might be chosen to excite a dye that emits red light.

DNA is tagged with a specific dye and then a fluid containing the tagged DNA is passed under a laser beam. The light-emission data are collected and analyzed, revealing information about the DNA.

"You also have to have some way of filtering the light," Sands said. "If, for example, you are using a laser that emits blue light, you can’t allow the blue light to go into your photo-detector because it will wash out the signal from the green light the excited molecules emit.

"You have to filter out the blue light and just pick up the green."

The research team had to create a tiny filter that could fit on a chip.

The "light-emitting diode," or LED, that emits blue light is a thin layer of gallium nitride that’s formed on top of a sapphire crystal. When electricity is passed through the LED, it produces a blue light.

With laser liftoff, the researchers use a device called an excimer laser to shine fast pulses of ultraviolet light onto the sapphire. Each pulse lasts only about 25 nanoseconds, or 25 billionths of a second. The concentrated energy removes the sapphire substrate on which the blue LED is formed, leaving behind only the thin layer. The LED film is transferred by the laser onto a filtering layer of cadmium sulfide, which screens out blue light. The layered diode and filter are then added to a photo detector on a single chip.

The thin-film LED is five micrometers – or millionths of a meter, thick – which is about one-twentieth as thick as a human hair, and is produced for less than $1, replacing the bulky and expensive laser in bench-top fluorescence detection instruments, Sands said.

"Something new that we recently reported was to put two colors, a blue and green LED, on one chip," he said.

Adding the green LED also meant adding another filter. Illuminating dyed molecules with a green LED causes the dye molecules to emit a reddish light. The second filter keeps green light from getting into the photo-detector so that it only detects the reddish light emitted by the excited dyed molecules.

At least two colors are considered critical for the analysis of biological and chemical materials.

"If you wanted to do biochemical detection of anthrax or some other substance, you almost always have to have two colors and your sample is tagged with two dyes," Sands said. "One serves as a control – to precisely calibrate the measurement – and the other color is for actually detecting the molecule you are after.

"We are now arguing that we can combine more than two colors, as well as arrays of LED-filter pairs. We could also build a spectrometer on a chip using an array of ultraviolet LEDs and a series of thin-film filters that absorb different colors."

The team is in the process of comparing the performance of the integrated microchip to bench-top instruments.

"Even if the performance never exceeds that of laser-based bench-top systems, the small size of the fluorescence detection microchip suggests a future as a portable, hand-held device for chemical detection and bioassay applications in remote locations," Sands said.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu
Sources: Timothy D. Sands, (765) 496-6105, tsands@purdue.edu
J. Alex Chediak, (510) 643-5304, chediak@uclink.berkeley.edu
Zhongsheng Luo, (510) 643-7036, zsluo@berkeley.edu

Sarah Yang, public information representative, UC-Berkeley, (510) 643-7741, scy@pa.urel.berkeley.edu

Note to Journalists: The research paper is available from Emil Venere, (765) 494-4709, venere@purdue.edu. It also can be found online.

Emil Venere | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/2004/040212.Sands.detector.html
http://www.sciencedirect.com/science/journal/09244247

More articles from Process Engineering:

nachricht New technology for ultra-smooth polymer films
28.06.2018 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Diamond watch components
18.06.2018 | Schweizerischer Nationalfonds SNF

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>