Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue engineers develop quick, inexpensive method to prototype microchips

08.01.2004


Purdue University researchers have developed a new method to quickly and inexpensively create microfluidic chips, analytic devices with potential applications in food safety, biosecurity, clinical diagnostics, pharmaceuticals and other industries.


Purdue University graduate student Tom Huang assembles a new microfluidic chip by placing a thin layer of a flexible polymer on a glass microscope slide. The new method of producing these chips saves time and money and uses materials easily acquired by any research laboratory. (Purdue Agricultural Communications photo/Tom Campbell)



"This development democratizes the preparation of microfluidic biochips," said Michael Ladisch, Distinguished Professor of Agricultural and Biological Engineering and Biomedical Engineering. "This brings the design and manufacture of these devices within reach of scientists in many laboratories who can now easily test their ideas and conduct research within a typical laboratory setting."

Microfluidics is a branch of nanotechnology that involves manipulating minute quantities of liquids, typically in a chip device approximately the size of a postage stamp. The initial design and manufacture of these chips often requires weeks of work, but the new approach developed by Ladisch and Tom Huang, a graduate student in chemical engineering, cuts that time to hours.


Microchips have traditionally been made through a lengthy and expensive process called photolithography, which uses X-rays or ultraviolet light to form a pattern on a glass or silicon wafer that is then etched by washing the wafer with a variety of solvents. The key to controlling the shape and size of the patterns on the wafer is the production of a template, which can take weeks to develop.

Ladisch and his team have developed an alternative method that uses materials easily acquired by any research laboratory, including glass microscope slides, tweezers, thin glass fibers such as those found in glass wall insulation, and a flexible polymer called PDMS that is available from most scientific supply companies.

"What we’ve done is really thinking outside of the box," said Nate Mosier, an assistant professor of agricultural and biological engineering who also contributed to this project. "This is a radical departure from using photolithography to make these devices."

The speed and simplicity of Ladisch’s method gives researchers the flexibility to experiment with the conception and construction of microchips that can test any number of ideas.

"This whole device can be developed and in operation in less than two hours," Ladisch said. "Tools like this that take a lot less time to make and that can be manufactured in any lab are going to speed up the rate of research."

Mosier said, "The capability for rapid prototyping and working out design considerations before the manufacturing step is important to any development, from the micro-scale on up.

"It’s always very difficult to the make the first of anything -- the second through the millionth are much easier."

The new chip assembly method involves placing a fine fiber - approximately one-tenth the width of a human hair - on a glass slide and covering it with a small square of the polymer PDMS. The polymer flexes slightly over the fiber, creating a small channel on either side of the fiber, much the same way that a sheet of plastic wrap placed on top of a pencil would bend, making two channels running the pencil’s length.

A small amount of pressure applied with a finger is enough to cause the PDMS to stick to the glass slide, Mosier said.

"The chemical properties of the PDMS allow it to stick to the glass slide with enough strength to form a tight seal, which permits us to pump liquids through the channel," Ladisch said.

In addition, he said, the small size of the channel - not quite the width of a strand of hair - allows researchers to minimize their use of experimental liquids, which may be costly or difficult to obtain.

In their proof-of-concept paper, published in the November issue of the American Institute of Chemical Engineers Journal, the team showed that coating the fibers with materials that attract different types of molecules allowed them to separate specific proteins from a mixed solution.

By manipulating the fiber’s properties, scientists can identify or separate various types of molecules, such as proteins or antibodies, from solutions pumped through the chip.

Depending on the properties of the fiber, liquids placed at one end of the channel move through the device by "wicking" along the fiber, or by being pulled through by with a weak vacuum at the opposite end of the channel.

"We can control the chemistry inside the channel to determine what flows through, what sticks, and in that way we can separate things out," Huang said.

This ability translates into numerous potential applications, such as the ability to diagnose diseases or detect foodborne pathogens and biological agents.

"These kinds of chips are essential from a security perspective," said Bob Armstrong, senior research fellow at the National Defense University, one of the organizations that funded this research.

"Microfluidic chips are becoming part of a sensor system to detect, for example, biological or chemical agents, or pathogens in the food supply. What is it you want to detect? Your imagination is the only limit on how to use these devices."

Also collaborating on this research were Woo-Jin Chang, research associate in electrical and computer engineering; Demir Akin, senior research scientist in electrical and computer engineering; Rafel Gomez, former graduate student in electrical and chemical engineering; and Rashid Bashir, associate professor of electrical and computer engineering and biomedical engineering.

The research is part of an ongoing project sponsored through the Purdue Center for Food Safety Engineering and the Purdue Laboratory of Renewable Resources Engineering. Funding was provided by the Agricultural Research Service of the U.S. Department of Agriculture, and the Center for Technology and National Security Policy at the National Defense University in Washington, D.C., is contributing to the further development of this concept.

Writer: Jennifer Cutraro, (765)496-2050
Sources: Mike Ladisch, (765)494-702 , ladisch@purdue.edu
Nate Mosier, (765)494-6695, mosiern@purdue.edu
Tom Huang, (765)494-0326, huangt@purdue.edu
Bob Armstrong, (202) 685-2532, armstrongre@ndu.edu
Ag Communications: (765) 494-2722; Beth Forbes, bforbes@aes.purdue.edu
Agriculture News Page

Jennifer Cutraro | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/2004/040107.Ladisch.chip.html
http://engineering.purdue.edu/IIES/LORRE/

More articles from Process Engineering:

nachricht Design treatment of advanced metals producing better sculpting
08.03.2019 | Purdue University

nachricht Laser Processes for Multi-Functional Composites
18.02.2019 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New gene potentially involved in metastasis identified

Gene named after Roman goddess Minerva as immune cells get stuck in the fruit fly’s head

Cancers that display a specific combination of sugars, called T-antigen, are more likely to spread through the body and kill a patient. However, what regulates...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Searching for disappeared anti-matter: A successful start to measurements with Belle II

26.03.2019 | Physics and Astronomy

Extremely accurate measurements of atom states for quantum computing

26.03.2019 | Physics and Astronomy

Listening to the quantum vacuum

26.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>