Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space Technology Goes Down To Earth To Support Mining

30.12.2003


Space exploration and underground mining both take place in extreme environments – so perhaps it is not too surprising that technology developed for one field is now being applied to the other.



ESA’s Technology Transfer Programme is accelerating space technology spin-offs to the mining and the minerals industry sector. In a recent workshop with representatives from the sector, several potential areas were identified as being suitable for cooperation.
"Today 7% of our completed technology transfers have been to the mining and smelting industrial sector, so we know it is an area where advanced technologies have the potential to improve both industrial performance and working conditions for the employees," says Pierre Brisson, Head of ESA’s Technology Transfer and Promotion Office.

"To take this a step further and to accelerate the spin-off process we decided to bring together industrial key players in the mining industry with our technology experts. During the workshop several space technology areas were identified, which potentially could resolve common problems today in mining and mineral production."



The event was organised by ESA’s Technology Transfer and Promotion Office and the European Mineral Resource RTD Council (EMiReC) with the support of the Thematic Network on European Sustainable Mining and Processing Industries (NESMI).

Altogether about 90 people participated in the workshop, with 35 from the mining and minerals industry sector. The rest were from non-mining companies already involved in the transfer of space technology to the sector and ESA specialists bringing expertise in specific space technology fields.

Chris Cross, Manager of Rio Tinto’s External Research Programmes, participated to see what space technology could bring, his specific interest is robotic systems for underground mining. Rio Tinto, which is one of the leaders in mining operating worldwide, is strongly represented in North America and Australia and has mining operations for aluminium, copper, diamonds, coal, uranium, gold, industrial minerals and iron. Some of their activities, now done primarily by surface mining, are to be changed into underground mines and robotics may be a solution to automating production.

Others participants included Deutsche Steinkohle AG (DSK) which carries out hard coal mining in the Ruhr, Saar and Ibbenbüren districts of Germany; DMK Environmental Engineering from Utah, which assists clients in all aspects of environmental engineering; Shell International, a global group of energy and petrochemical companies with operations in over 145 countries; and Gullivare Hard Rock Research (NGRR) from Sweden.

"We are looking for sensors and processing methods to determine, early in the mining process, the exact content of the mined stones to optimise mineral processing, such as stone crunching," said Åsa Sundqvist, Project Manager from NGRR.

ESA presented several advanced technologies identified as potential candidates for use in the mining industry, such as space robotics for planetary surface exploration, life support systems, and the Galileo and EGNOS navigation systems.

"The miner and the astronaut both work in equally harsh environments, although in very different ways," said Geoff Liggins from C-Core in Canada, which works with ESA’s Harsh Environment Initiative (HEI), which transfers technologies from space to sectors such as oil, gas, mining and tunnelling.

"The key is know-how. Typically the technology itself, in the form that is supplied in space, cannot be directly applied to industry but the know-how and expertise to develop that technology is of great value."

Inspecting for cracks in concrete tunnels or the rock walls of mines can now be done by CRIS, which was developed under HEI and uses sophisticated ground penetration radar techniques to detect the cracks.

"The history of CRIS began back in 1994 with Ginger, a guidance ground penetration radar we developed for ESA, and which was planned to go on a planetary rover on the Moon or Mars," said Gunnar Triltzsch from Radar System Technik GmbH from Germany. "In 2000 we used the same technology to build CRIS, to identify cracks in a hard rock environment." The handheld device has been successfully tested and demonstrated in Canadian mines.

Stefano Carosio from D’Applolonia S.A. in Italy illustrated another technology transfer project for shape memory alloys, a special metal which reverts to a previous shape when heated. For satellites this material is used to unfold solar panels after launch. The same material can now be used to split rocks very precisely.

Technologies from the Smart-1 lunar mission, Mars Express and Venus Express were also presented and illustrated a variety of innovations developed by ESA to overcome challenges in exploring other planets such as searching, digging, extracting and examining minerals and regolith samples on other planets. These tools and techniques could have similar potential back on Earth.

"The summing-up session made it clear that there were common interests between the mining industry and space," said David Raitt, ESA’s Senior Technology Transfer Officer.

Christian Fouillac, President of EmiReC, noted "the technologies developed by the space industry show some promising characteristics for us. One example is mineralogy and chemical analysis by remote spectrometry for mapping materials. Another point is material performance. We have also seen space systems for drilling in hard rock conditions where the energy consumption of the drilling has been reduced to a very low level - this is very attractive for us."

"Other areas of special interest are the handling of waste water and waste treatment contamination, and gas detection systems used in the life support programme developed by the space industry. We want to evaluate how to transfer this to increase safety in underground mines."

In reply to Raitt’s question "How does the space technology compare to the technology already used in the mining industry?" Karsten Jäger from Deutsche Steinkohle AG (DSK) answered, "for mines keep it simple and strong. We need less precise but more robust technology, although strong developments in mining are towards automating operations with remote control. All techniques have to be cost effective on the one hand and very robust on the other. I feel that direct transfer of technology from space to underground is not so easy as it looks. There are some possibilities, and we will have a study next year, together with MST, to start looking for technologies to come inside our operations." MST Aerospace is ESA’s Technology Transfer broker in Germany.

Corina Hebestreit, Secretary General of Euromines - the European Association of Mining Industries, said, "a lot of the space technologies are of interest to the mining industry and we would like to continue to work with ESA on this by holding brainstorming sessions on dedicated topics involving specialists from both sides."

In his conclusion, David Raitt noted that it was one of several similar events and one that showed great promise – not least because of the high degree of interest and participation from the mining and mineral processing sector, as well as from ESA departments themselves. Since the workshop took place there have already been several initiatives and follow-ups which will ensure a durable cooperation.

Pierre Brisson | European Space Agency
Further information:
http://www.esa.int/export/esaCP/SEMA8V274OD_index_0.html

More articles from Process Engineering:

nachricht Copper oxide photocathodes: laser experiment reveals location of efficiency loss
10.05.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie

nachricht NIST research sparks new insights on laser welding
02.05.2019 | National Institute of Standards and Technology (NIST)

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Shell increases versatility of nanowires

26.06.2019 | Materials Sciences

Hubble finds tiny 'electric soccer balls' in space, helps solve interstellar mystery

26.06.2019 | Physics and Astronomy

New combination therapy established as safe and effective for prostate cancer

26.06.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>