Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

You can’t tell a rock by its rind: How a tiny abrasion tool will help reveal geology of Mars

22.12.2003


Facelifts can sag. Botox is temporary. But modern science has a new way to return youth to weathered faces: the rock abrasion tool (RAT). If your dermatologist hasn’t heard of it, ask your local Mars scientist.



Billions of years of exposure to the sun, atmosphere and extremely fine Martian dust has given Mars rocks a weathered "rind," or exterior layer. The RAT, part of the science-instrument package carried by the two Mars rovers, Spirit and Opportunity, uses a diamond-tipped robotic grinding tool to scrape away this weathered exterior, revealing a fresh surface.

"Clearing away the dust and a weathered layer gives the science instruments access to the part of the rock that hasn’t changed since it was formed billions of years ago," says Cornell University alumnus Paul Bartlett. An employee of New York engineering firm Honeybee Robotics, Bartlett has been working on the RAT since the first concept drawings from Cornell professor of astronomy Steven Squyres arrived in his fax machine three years ago.


Spirit is scheduled to land on Mars on Jan. 3 at 11:35 p.m. EST. Opportunity will touch down on Jan. 25 at 12:05 a.m. EST.

The Jet Propulsion Laboratory in Pasadena, a division of the California Institute of Technology, manages the Mars Exploration Rover project for NASA’s Office of Space Science, Washington, D.C. Cornell, in Ithaca, N.Y., is managing the science instruments carried by the two rovers, with Squyres as principal investigator.

Access to the pristine rock interior is critical to understanding the history of the geology of Mars and to answering what Bartlett describes as the "big questions" to be solved by the rovers: Did water -- or even an environment suitable for life -- once exist on the red planet?

These big questions might be answered by a very small machine: The RAT weighs only 1 1/2 pounds and uses less power (30 watts) than most light bulbs. It is about the size of a soda can.

The RAT occupies the turret, or "hand," of the rover’s robotic arm, along with other rover science instruments for rock analysis, a microscopic imager and Mössbauer and alpha particle X-ray spectrometers. The agile arm, which has shoulder, elbow and wrist joints just like a human arm, presses the RAT up against a rock’s surface.

In just two hours, the RAT’s grinding wheel can shave off a disk about twice the diameter and thickness of a nickel from a hard rock surface. Two brushes sweep the resulting dust away from the hole to provide a clean surface for an up-close view.

Once the fresh surface is exposed, the imager and the spectrometers take over, peering through the abraded opening to perform a detailed analysis of the rock’s interior. So that scientists can learn about the processes that might have weathered the rock, the rover also records temperature and current readings from the RAT’s three motors while they grind away the exterior layer.

Bartlett notes that the breadth of his work on the RAT, which spans design, fabrication, assembly, testing and mission operations, "is a rare opportunity in engineering."

And working with Mars scientists also has stood out among his other assignments for Honeybee. One was building a robot for an art installation at Manhattan’s Whitney Museum of American Art. He discovered, he says, that "planetary scientists and avant-garde architects speak very different languages."

This release was prepared by Cornell News Service science-writer intern Kate Becker

David Brand | Cornell News
Further information:
http://www.news.cornell.edu/releases/Dec03/Mars.RAT.deb.html

More articles from Process Engineering:

nachricht New technology for ultra-smooth polymer films
28.06.2018 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Diamond watch components
18.06.2018 | Schweizerischer Nationalfonds SNF

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>