Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small and Deadly USC engineers develop novel technologies to measure ultrafine specks of air pollution

19.12.2003


New technologies developed by University of Southern California engineers to measure the toxic properties of ultrafine particles in air pollution are helping scientists understand the connection between smog and cardio-respiratory disease.


Constantinos Sioutas, deputy director and co-principal investigator of
USC’s Southern California Particle Center and Supersite, sets up an air concentrator to measure tiny particles of urban pollution.
Photo: Irene Fertik



"We are just beginning to realize that these microscopic specks of dust and soot are far more toxic in the human body than larger, coarser particles," said Constantinos Sioutas, deputy director and co-principal investigator of USC’s Southern California Particle Center and Supersite.

"They aren’t trapped by the nose and trachea, but travel all the way down to the tiniest branches of the lungs and enter the bloodstream through the alveoli, which are very thin-walled sacs of spongy tissue at the ends of the bronchioles," said Sioutas, an associate professor of civil and environmental engineering in the USC School of Engineering.


More residents than ever are falling prey to microscopic soot less than 1/100th the diameter of a human hair. These particles, known as "particulate matter" or PM, lodge deep inside the lungs, where they are rapidly absorbed into the bloodstream or remain embedded for long periods of time.

Particle smog has been blamed for a 17-percent increase in premature deaths from heart and lung disease, according to recent studies by Harvard University and the National Institutes of Health, among others.

Nationwide, this invisible soot - which is less than 2.5 microns in diameter - has been linked to roughly 60,000 smog-related deaths in the United States each year.

In 2000, the Environmental Protection Agency responded to the paucity of information about particulate matter by establishing the Southern California Particle Center and Supersite, the nation’s largest research center focused on understanding the health effects of exposure to airborne particulate matter.

With an $18 million grant, the center brought together interdisciplinary faculty from five institutions in Southern California - USC, UCLA, Caltech, UC Irvine and UC Riverside - to measure the physico-chemical characteristics of air pollutants and identify the properties that can aggravate such health problems as chronic asthma, bronchitis, emphysema and other respiratory, as well as cardiovascular, diseases.

Particulate matter usually contains a combination of fine solids such as dirt, soil dust, pollens, molds, ashes and soot, along with even finer aerosols that are formed in the atmosphere from gaseous combustion byproducts, such as volatile organic compounds, sulfur dioxide and nitrogen oxides, Sioutas said.

Invisible, for the most part, these particles "snow" on people from a wide range of sources, such as factory and utility smokestacks, vehicle exhaust, wood burning, mining, construction activity and agriculture, he said.

Little is known about the chemical composition of this “invisible soot,” Sioutas said. Consequently, federal, state and local air quality management agencies currently regulate only the mass of particulate matter. However, the size and chemical composition of these particles are far more important in determining the degree to which they pose a health risk.

Sioutas’ interest in the field began in graduate school at Harvard, where he built his first particle concentrators. He currently holds nine patents on concentrators that can separate the tiniest particles of pollution from the majority of the surrounding gases so that the particles may be studied.

These monitors are able to identify pollutants in discrete size groups: ultrafine particles of less than 0.1 micrometers, such as those generated by combustion; fine particles, ranging in diameter from 0.1-2.5 micrometers, such as ammonium sulfate and nitrate compounds, which produce eye-stinging photochemical smog; and coarse, dusty particles larger than 2.5 microns that contain mostly soil and sea salt elements.

The concentrators have been introduced in a host of institutes and agencies - including the EPA, the USC and UCLA medical schools, Harvard Medical School and the National Institutes of Health in the Netherlands and Canada - to help scientists identify the physical and chemical properties of microscopic pollution.

Sioutas has monitored concentrations of toxic particulate matter in the vicinity of interstates 110, 710 and the 405, which slices north-south through the Los Angeles basin. Home to 15 million individuals and 10 million vehicles, the L.A. basin relies on the 405 alone to funnel nearly 100,000 vehicles through the region every day.

"It may sound a little odd, since we live in one of the smog capitals of the country, but the lack of conclusive information to link ambient vehicular air pollution to cardio-respiratory disease is a critical gap in our work," said Sioutas, a member of the Air Quality Advisory Committee on Particulate Matter for the State of California.

"Automobiles spew millions of tons of this noxious soot into the air every day, but a lot of it is far smaller than anything we have ever been able to measure in the past."

With a team of researchers from USC’s department of civil and environmental engineering, as well as from UCLA’s School of Public Health, Sioutas made detailed measurements showing that gasoline emissions constituted about 90 percent of all vehicular emissions along the 405 and 110 freeways.

But along Interstate 710, 80 percent of the particle pollution came from diesel engines, which some researchers consider to be more toxic than gasoline emissions.

The smallest particles, Sioutas stressed, were the most toxic.

"They’re the easiest to inhale," he said. "They can flow all the way down into the alveoli and coat that spongy moist lung tissue, which is then rapidly absorbed in the bloodstream."

The findings have raised serious concerns about the adequacy of current national air quality standards for particulate matter.

In spring 2003, the EPA was prompted to initiate a new review of particulate matter standards. The review has not been concluded yet, but the board is considering a proposal to impose stricter regulations nationwide on particle mass [size] and chemical composition.

Diane Ainsworth | UCS
Further information:
http://ww.usc.edu/dept/engineering/news/2003_stories/2003_12_17_air.html

More articles from Process Engineering:

nachricht Decontaminating pesticide-polluted water using engineered nanomaterial and sunlight
16.01.2020 | Institut national de la recherche scientifique - INRS

nachricht TUM Agenda 2030: Combining forces for additive manufacturing
09.10.2019 | Technische Universität München

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Turbomachine expander offers efficient, safe strategy for heating, cooling

25.02.2020 | Power and Electrical Engineering

The seismicity of Mars

25.02.2020 | Earth Sciences

Cancer cachexia: Extracellular ligand helps to prevent muscle loss

25.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>