Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New production-ready magnesium sheet

27.11.2003


Australia’s breakthrough low-cost, thin magnesium sheet technology will be made fully production-ready during the next twelve months.



This follows the successful development by CSIRO (Commonwealth Scientific & Industrial Research Organisation) of an industrial-scale pilot plant now producing near-net-shape, or close to production thickness, low-cost magnesium sheet.

Ms Vicki Tutungi, the Head of Commercial Development at CSIRO Manufacturing & Infrastructure Technology, says, "We are aiming at an in-production technology transfer for uptake by a suitable Australian or international commercial partner".


"During proving, CSIRO is continuing discussions with a number of parties interested in the uptake of its technology."

CSIRO has now completed successful installation of a new coil line for its magnesium sheet plant, and the first coils of magnesium sheet of 60 kg each have been supplied to one of the leading manufacturers of magnesium forming products in Japan for rolling and forming trials.

"Our proving plan includes a budget of $3m, including capital acquisition and appointment of an operations manager", says Ms Tutungi.

"We are now pleased to announce the appointment of Mr Peter Kean (BAppSci) to the position."

Ms Tutungi says, "Mr Kean brings to the project extensive experience in light metal casting R&D, from research through to commercialisation of a novel casting process".

"His previous experience, including managing a metal fabrication facility, and his metallurgical qualifications, combine to make him well suited to the role.

"Mr Kean will be responsible for proving the production capability of the CSIRO Magnesium Sheet Process.

"The existing project staff will all be employed to provide production expertise and supporting R&D.

"Our strategy means potential partners will be able to tap into an immediate revenue stream as part of a CSIRO package designed to break down the barriers to the uptake of this exciting new technology", says Ms Tutungi.

"The initial enquiries CSIRO has received so far make us confident that the market is ready and waiting for commercial quantities of low-cost, thin magnesium sheet."

The twelve-month production preparation and technology prove out will take place at CSIRO’s facilities at Clayton in Melbourne, Australia.

Background Break-out Piece

Magnesium sheet is used to produce a new generation of stronger, lightweight motorcars, DVDs, printers, cameras, computers and many other consumer goods.

Previously, its commercial uptake has been hindered by the high cost and availability of magnesium sheet.

The CSIRO Twin Roll Caster aims to produce as-cast magnesium sheet in commercial quantities using patented CSIRO systems specifically developed for handling molten magnesium.

CSIRO has been developing technology to cast magnesium alloy sheet since 2000.

An exhaustive proving program has demonstrated its technology is reliable, low-cost, efficient and potentially suitable for both continuous (large) and batch (small and medium ) production, and for producing good quality magnesium alloy sheet from a large range of conventional and new magnesium alloys.

Commercial quality sheet samples from 2.3-5 mm thick have been successfully cast in standard alloys (AZ31, AZ61 AM60 and AZ91), along with new magnesium wrought alloys.

These samples have already been rolled down to 0.5-0.6 mm gauges, using a unique finish-rolling schedule developed by CSIRO specifically for cast magnesium alloy sheet.

More information:

Brad Cowley, Industry Manager, CSIRO Elaborately Transformed Metals, Email: Brad.Cowley@csiro.au

Ken Anderson, Manager Marketing Communication, CSIRO Manufacturing & Infrastructure Technology, Email: Ken.Anderson@csiro.au, 61 3 9545 2052

Ken Anderson | CSIRO
Further information:
http://www.csiro.au/index.asp?type=mediaRelease&docid=Magnesiumsheetupdate&style=mediaRelease

More articles from Process Engineering:

nachricht A water treatment breakthrough, inspired by a sea creature
27.11.2018 | Yale University

nachricht Research project AutoAdd: Paving the way for additive manufacturing for the automotive industry
22.11.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>