Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Dog-on-a-chip’ could replace drug-sniffing canines

30.10.2003


Police dogs across the country could soon be out of work, replaced by an electronic "dog-on-a-chip" that sniffs out cocaine and other narcotics. Scientists at Georgia Tech have created a new detection tool that is portable, inexpensive, and doesn’t require feeding or grooming. They say it is superior to previous "electronic noses" designed for this purpose.



The report will appear in the Nov. 15 edition of Analytical Chemistry, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society.

"Our technology provides a hand-held sensing device capable of real-time detection, reducing the time between drug seizure and laboratory analysis," says Desmond Stubbs, a doctoral candidate in chemistry working under the direction of William Hunt, Ph.D., a professor of electrical engineering at Georgia Tech in Atlanta.


The sensor, which performed well in the lab and in a field test with the Georgia Bureau of Investigation, is "an elegant fusion of biotechnology and microelectronics," according to Hunt. This combination of disciplines makes the sensor superior to previous "electronic noses." The U.S. government will spend more than $19 billion this year in the war on drugs, according to the Office of National Drug Policy. Police dogs are important tools in this battle; their highly developed olfactory systems can detect small molecules in the part-per-billion range.

But using dogs has its drawbacks. They require expensive handlers to train and care for them, and the seized drugs must still be sent to the lab for further analysis — adding trained technicians and costly lab equipment to the tab.

Plus, scientists still don’t know exactly what chemicals the dogs are sensing, allowing for significant variations from one dog to the next. Dogs also have trouble detecting specific drug targets in the presence of other odors, such as coffee grounds. "Unfortunately, the illicit drug traffickers are aware of this and invariably mask their product with different chemicals to evade authorities," Stubbs says.

The new device addresses all of these issues.

Two key features of any vapor-sensing tool are sensitivity and specificity. Sensitivity is the ability to detect very small amounts of a chemical. Specificity is the ability to differentiate a certain chemical from a group of many similar ones (e.g., cocaine from coffee grounds).

The dog-on-a-chip can sense cocaine at a few trillionths of a gram. This sensitivity is achieved through surface acoustic wave (SAW) electronics, a method of detecting a chemical by measuring the disturbance it causes in sound waves across a tiny quartz crystal. This is a fairly common analytical method, and it has been used in other electronic noses, but by itself it does not address the problem of specificity.

The new chip goes a step further by incorporating monoclonal antibodies — cloned copies of proteins called antibodies that the immune system produces to fight foreign invaders. The researchers used anti-benzoylecgonine (anti-BZE) in the device because it differs only slightly in structure from cocaine, allowing it to bind preferentially to that molecule.

The SAW sensor is coated with a thin layer of anti-BZE. When a vapor sample passes through, cocaine molecules attach to anti-BZE molecules, causing a disturbance in the sound waves on the quartz crystal that is detected as an electrical signal.

"We are the first group to use specific antibodies to differentiate similar sized molecules in a complex vapor sample," Hunt says. This gives the dog-on-a-chip an advantage over its canine competitors and other electronic devices. It will also be significantly cheaper and less time-consuming by removing many of the steps from the current detection protocol.

The new device was carefully calibrated in a laboratory setting, and then it was put to the test in the field. "In field tests conducted at the Georgia Bureau of Investigation, we were able to detect cocaine obtained during an actual drug seizure," Stubbs says. "By simply drawing the vapor through our prototype device, we got a positive detection in a matter of seconds."

The ability to detect and identify small, non-volatile molecules like cocaine based on their electronic vapor signature could also be used in airports and other locations to detect explosives and chemical warfare agents, according to the researchers.

The U.S. Customs Service and the Office of National Drug Control Policy (ONDCP) provided funding for this research.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org/

More articles from Process Engineering:

nachricht Harder 3D-printed tools – Researchers from Dresden introduce new process for hardmetal industry
11.10.2018 | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

nachricht Flying High with VCSEL Heating
04.10.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>