Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New scheduling method raises efficiency of electronics recycling

15.10.2003


An industrial engineer at Purdue University has created a method to increase the efficiency, profitability and capacity of recycling operations for electronic products such as computers and television sets.



The work also promises to open up a new area of research in a field known as scheduling.

More than 1.5 billion pounds of electronic equipment is processed every year in the United States, and the quantity of discarded personal computers is expected to rise substantially over the coming decade.


While these products contain valuable materials, including copper, aluminum and steel, they also harbor hazardous substances such as lead.

Although certain recycling centers specialize in electronic products, there is no software designed for the efficient scheduling of jobs within electronics recycling plants. Such scheduling methods are commonly used to improve production in manufacturing plants, but the goals are different for recycling applications, said Julie Ann Stuart, an assistant professor of industrial engineering at Purdue.

She has developed a method for improving the efficiency of electronics recycling by better managing the flow of incoming products from storage to disassembly.

"In recycling you have a different objective when you schedule jobs than you do in manufacturing, and you need different key measurements to achieve that objective," Stuart said. "We created the key measurements, and we identified the new objective, which may open up an area of research for a whole new class of scheduling problems."

Findings about the new approach are detailed in a paper appearing this month in the IEEE Transactions on Electronics Packaging Manufacturing, published by the Institute of Electrical and Electronics Engineers.

Scheduling is a field in which researchers develop methods to improve efficiency by carefully timing the sequence of tasks in an operation, such as a manufacturing process, in which a critical objective is to complete a product on time. Manufacturers are expected to meet "due dates," or deadlines for the delivery of products.

The priorities, however, are different in recycling; there is no due date, and it often doesn’t matter how fast the final "products," raw materials such as copper and steel, are extracted from obsolete machines, Stuart said.

Far more important to the electronics recycler is keeping plenty of space continually available in an area of the plant where products are received and briefly stored immediately before they are recycled.

Electronics recyclers earn a portion of their income just for receiving shipments. Because the arrival of shipments is unpredictable, it is important to always have enough storage space available. If the receiving area – or staging space – is full, incoming shipments have to be turned away or stored in trailers, causing a loss of income or incurring trailer rental fees, Stuart said.

"The recycler wants to empty the staging space as fast as possible to receive more materials," she said. "That’s important because they may receive three truckloads this week, one the following week, two the next week and so on."

Recyclers currently try to keep their staging areas as open as possible by first moving the products that can most quickly be taken apart. But that is not the best approach, according to the research findings.

In the new method, the largest products that can be quickly disassembled are the first to be moved out of the staging space. Stuart compared the size-based method with two other strategies, one in which the most valuable products are moved first out of the staging area and another in which the products that can be most quickly disassembled are moved first.

She found that only the size-based method improved the system significantly.

"Moving the larger objects with quick disassembly times first enables you to operate with a smaller staging area," said Stuart, who tested her method with models that simulate recycling operations. "We showed that using our scheduling policy could lower the required maximum staging volume by as much as half. If you are able to reduce the staging space from 30,000 square feet to 15,000 square feet, that represents a considerable savings in overhead."

With increased efficiency also would come greater capacity because the recycler would be able to process a greater number of products within the same space.

Stuart grouped products into families – such as computer monitors and central processing units, television sets, office and kitchen electronics – and she used the turnover rate of products in the staging space as a key measurement, or metric. To determine which objects to move first, she created a technique in which the average size of a product family is divided by the time it takes to begin processing that product.

"If you have large products that don’t take very long to start disassembling and you start with those first, you are going to free up that space faster," she said. "This is very easy to implement because you determine an average size for such a group and an average time, and then you update those averages perhaps once a year. You can then use the size-based estimates for a year to schedule products at the recycling center."

Improving plant efficiency could become an issue in the future, as state and federal policy-makers consider how to control waste from electronic products. Certain electronic components contain hazardous materials, including mercury, lead and cadmium, making it important to recycle discarded computers so they are not dumped in landfills. The number of personal computers, televisions and other consumer electronics expected to become obsolete this decade may approach 3 billion units, according to the International Association of Electronic Recyclers.

The more than 1.5 billion pounds of electronic junk processed annually includes about 40 million discarded computer components like printers, monitors and CPUs, according to a report issued earlier this year by the association.

The association report estimates that about 1 billion units of obsolete computer equipment will become potential scrap between now and 2010, and about 3 billion units of consumer electronics will be junked during that time, including 200 million television sets. The increasing flow of e-trash is expected to drive a fourfold growth of the U.S. electronics recycling industry, currently made up of about 400 companies with more than 7,000 employees.

Currently, recycling computers and television sets is not required in most places. But if new requirements are instituted in the future, recyclers will face a significant challenge trying to manage the surging flow of high-tech junk.

"If it ever becomes law to recycle electronics, it would be a good idea to use this scheduling approach so that less costly, smaller recycling centers may achieve the same objective as larger ones," Stuart said.

The research was funded by the National Science Foundation.

Stuart began the work with her student Vivi Christina while she was a faculty member at Ohio State University and completed the research at Purdue. The paper will appear in the April 2003 issue of the monthly publication, IEEE Transactions on Electronics Packaging Manufacturing, which will be available in this month.

Emil Venere | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/031013.Stuart.recycle.html
http://www.iaer.org/communications/indreport.htm

More articles from Process Engineering:

nachricht Harder 3D-printed tools – Researchers from Dresden introduce new process for hardmetal industry
11.10.2018 | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

nachricht Flying High with VCSEL Heating
04.10.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>