Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT engineers report new approach to tissue engineering

14.10.2003


MIT engineers report a new approach to creating three-dimensional samples of human tissue that could push researchers closer to their ultimate goal: tissues for therapeutic applications and replacement organs. The technique could also help answer questions in cell and developmental biology.



The team "seeded" human embryonic stem cells, which have the potential to differentiate into a variety of specialized cells, onto a biodegradable polymer scaffold. By treating the scaffold/stem cell structure with chemical cues, or growth factors, known to stimulate the formation of specific cell types, the researchers coaxed the stem cells to form tissues with characteristics of developing human cartilage, liver, nerves and blood vessels.

"Here we show for the first time that polymer scaffolds … promoted proliferation, differentiation and organization of human embryonic stem cells into 3D structures," the researchers wrote in a paper to appear the week of Oct. 13 in the online edition of the Proceedings of the National Academy of Sciences.


Further, the resulting tissues continued to thrive when implanted in mice with suppressed immune systems (to eliminate rejection). They expressed human proteins, and integrated with the host’s blood-vessel networks.

"For me it was very exciting to see that these [stem] cells could move around and start to ’talk’ with one another, generating the different cell types common to a given tissue and organizing into that tissue," said Shulamit Levenberg, first author of the paper and a research associate in the Department of Chemical Engineering.

The technique could also have an impact on the study of cell and developmental biology. "When you give cells a three-dimensional structure [on which to grow], it’s really a lot more like what’s happening in the embryo," said Levenberg, a mother of four whose youngest child is seven months old.

Levenberg’s colleagues on the work are Robert Langer, the Germeshausen Professor of Chemical and Biomedical Engineering; MIT alumna Ngan Huang (S.B. 2002); Erin Lavik, a postdoctoral fellow in the MIT-Harvard Division of Health Sciences and Technology who is now a professor at Yale; Arlin Rogers of MIT’s Division of Comparative Medicine; and Joseph Itskovitz-Eldor of the Technion in Israel.

The work provides a new approach to prodding stem cells to grow into different tissues. Before, researchers created a variety of cell types from one batch of stem cells, then isolated the cell type of interest. The isolated cells were then grown on a given medium, such as a polymer scaffold. The same MIT team did just that last year with the endothelial cells that blood vessels are composed of.

This time around, the MIT researchers seeded stem cells directly into the scaffold. "We found that with different growth factors, we could push them in different directions," said Levenberg.

The polymer scaffold is key. "The scaffold provides physical cues for cell orientation and spreading, and pores provide space for remodeling of tissue structures," the researchers wrote.

The scaffold was carefully engineered. "If the scaffold is too soft," for example, "it collapses under the cells’ mechanical forces," said Levenberg. The team also used two different polymers to create the scaffold. "One degrades quickly, the other more slowly," she said. "That gives cells room to grow while still retaining a support structure for them."

The work was supported by the National Institutes of Health. The human embryonic stem cells are from an NIH-approved line.

Elizabeth A. Thomson | EurekAlert!
Further information:
http://web.mit.edu/newsoffice/www/

More articles from Process Engineering:

nachricht Design treatment of advanced metals producing better sculpting
08.03.2019 | Purdue University

nachricht Laser Processes for Multi-Functional Composites
18.02.2019 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>