Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A breakthrough in heat transfer technology

21.07.2003


A revolutionary breakthrough in heat transfer technology that could improve process productivity and reduce energy consumption and waste, is being developed by Ashe Morris Ltd thanks to a £100,000 investment from NESTA (the National Endowment for Science, Technology & the Arts), the largest source of early stage funding in the UK.

Heat exchangers are used in many industrial, commercial and domestic applications and can be used to add or remove heat during chemical and biological manufacturing processes. In a batch manufacturing environment, such as fermenting beer, or making pharmaceuticals, current heat exchangers control the temperature of the process (where the reaction occurs) by regulating the heat transfer fluid temperature or the flow rate as it passes through a cooling jacket.

Ashe Morris is developing a new technology that controls the temperature by changing the effective heat transfer area itself to control the process temperature. In a batch manufacturing application, the heat transfer fluid will flow around up to 100 independent elements that are controlled by a multi-port linear valve with a piston. As the piston moves up and down the valve it brings the relevant elements into use and heats or cools that section.



This is simple innovation has many unique and innovative aspects to it. The design could offer more precise and fast temperature control and increase yield and quality in processes that are sensitive to shifts in temperature. This will, in turn, reduce chemical waste and the costs associated with recycling waste products.

It can also utilise calorimetry principles – which, for the first time, can now be used to measure the amount of heat evolved or absorbed in a chemical reaction in any size of plant. This method – unlike existing systems - allows for a reaction to be monitored and altered while it is in process. As a result, progress can be regularly checked, conditions optimised and potential problems avoided.

Furthermore, Ashe Morris believes that the new technology can reduce energy consumption by up to 90% in specific applications - thus reducing emissions. The system is also easily retrofitted so companies would not need to abandon existing equipment to benefit from the new technology.

Jeremy Newton, Chief Executive of NESTA, said: "Despite generating considerable market interest Ashe Morris was stuck in an early stage equity gap and needed to secure funding to develop the project. A NESTA Invention & Innovation award of £100,000 will do just that, helping to take this unique idea to the next stage of investment. This idea is both brilliant and simple and could be an excellent investment for NESTA and the UK as a whole."

Contact:

National Endowment for Science, Technology & the Arts, NESTA
Fishmongers’ Chambers,
110 Upper Thames Street,
London EC4R 3TW
Tel: 020 7645 9518
Fax 020 7645 9501

Joseph Meaney | alfa
Further information:
http://www.nesta.org.uk

More articles from Process Engineering:

nachricht Decontaminating pesticide-polluted water using engineered nanomaterial and sunlight
16.01.2020 | Institut national de la recherche scientifique - INRS

nachricht TUM Agenda 2030: Combining forces for additive manufacturing
09.10.2019 | Technische Universität München

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Researchers discover vaccine to strengthen the immune system of plants

24.01.2020 | Life Sciences

Brain-cell helpers powered by norepinephrine during fear-memory formation

24.01.2020 | Life Sciences

Engineered capillaries model traffic in tiny blood vessels

24.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>