Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A biological technique could save up to 2 million euros at sewage treatment plants

15.07.2003


A new method for treating the smell of rotten eggs emitted by sewage plants, developed in conjunction by a researcher at the Universitat Autònoma de Barcelona’s Engineering School (ETSE) and a researcher from the University of California, could lead to worldwide savings of two million euros a year. The researchers have discovered a simple method for transforming the chemical odour filters currently installed in treatment plants into equally efficient, but cheaper and less toxic, biological filters.


Blocks of polyurethane foam with the bacterial covering that substitutes chemical filters in the treatment of smells


The Californian plant where the biological method was tested successfully. The tower on the left uses chemical filters, while the one on the right has been fitted with a biological filter



The treatment of sewage causes unpleasant smells due to emissions of such gasses as hydrogen sulfide (H2S), along with other compounds such as sulfur compounds, amines and carboxylic acids. Of all these gasses, the most noticeable is hydrogen sulfide, with its strong smell of rotten eggs. Therefore, sewage treatment plants include chemical filters for the control of such bad smells. These filters are fast absorbers and degraders of the whole volume of hydrogen sulfide generated, but there are major disadvantages: they are expensive, and generate and use toxic products. The alternative to using chemical filters is the use of biological filters, based on the biodegradation of hydrogen sulfide using bacteria. Until now, such filters were too voluminous to be used in plants treating large amounts of gasses.

The lecturer from the UAB’s High Engineering School (ETSE), David Gabriel, along with Marc A. Deshusses, lecturer at the University of California (USA), have developed an alterative that can transform the chemical filters used until now into biological filters that are just as fast and effective as the former. Via a cheap and simple conversion process, the new biological filters degrade the hydrogen sulfide in a record time: with some 2 seconds of contact between the gas and the filter. The invention has already been tested in Californian sewage plants (USA).


The transformation of a treatment plant’s filter to the new system designed by the two researchers would cost around 50,000 euros, but would imply savings of up to 30,000 euros a year in operational costs and expenses on chemical products. The researchers presented their findings in the prestigious magazine Proceedings of the National Academy of Sciences (PNAS), and state in their article that, considering between 25% and 40% of the chemical filters currently in use around the world can be transformed into biological filters, this transformation could lead to worldwide annual savings of up to 2,000 million euros.

Octavi López Coronado | alfa
Further information:
http://www.uab.es

More articles from Process Engineering:

nachricht Harder 3D-printed tools – Researchers from Dresden introduce new process for hardmetal industry
11.10.2018 | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

nachricht Flying High with VCSEL Heating
04.10.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>