Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Accurate milk enzyme measurement may cut cheese processing cost

30.05.2003


A new method to accurately measure quantities of a cheese-ripening enzyme in milk could reduce the time and cost of producing cheese, according to a report by Purdue University researchers.


Kirby Hayes hopes research at Purdue will help cheese producers lower production costs by shortening the time it takes cheese, like this Swiss variety, to ripen. Hayes is an assistant professor of food science. (Agricultural Communication photo/Tom Campbell)



Infrared spectroscopy was used in combination with statistical analysis to determine the concentration of plasminogen, a form of the enzyme integral to cheese manufacturing. The study, by co-authors Lisa Mauer and Kirby Hayes, both assistant professors in the Department of Food Science, is published in the May issue of the International Dairy Journal.

"This method allows us to see how much plasminogen there is in the conditions that we’re manipulating," said Hayes, a food chemist. "When we combine this information with currently available assays, or tests, for enzyme activity, we can look at both location and activity.


"Ultimately, this research is to gain a better understanding of the quality of both fluid milk products and fermented milk products, such as cheese and yogurt, because this enzyme affects quality both negatively and positively."

To reduce ripening time on a commercial scale, researchers will have to learn how to manipulate the enzyme system by changing specific factors such as the pH of milk during fermentation, Hayes said.

"The Holy Grail is trying to reduce cheese ripening time by understanding these enzymes," he said.

The research team focused on plasminogen concentrations in solutions that also contained milk proteins, which can change the enzyme’s activity and interfere with current testing methods. In a second part of the study, they added to the same type of solution both plasminogen and plasmin, an active form of the enzyme. They wanted to determine if Fourier-transform Infrared spectroscopy (FT-IR) could differentiate between plasmin and plasminogen and whether the method could measure how much of each was in the solution.

FT-IR uses wavelengths of light to identify types of chemical bonds. Each type of molecule absorbs light differently, producing a spectrum. Scientists use this spectral information to identify the compound much in the way a fingerprint can identify a person.

The milk enzymes the Purdue researchers are studying occur naturally in the body and are blood-borne catalysts that break down other proteins in milk. This decomposition causes milk to spoil or to ripen into cheese and other fermented dairy products. Plasmin also exists in humans as part of the blood-clotting system.

"FT-IR is a food analysis tool that has been used to measure organic compounds, such as carbohydrates, lipids, proteins and enzymes, for biomedical and pharmaceutical research," Mauer said. "However it’s more difficult to apply to foods because of the hundreds of compounds in them.

"FT-IR is basically a physical chemistry method. It gives a unique fingerprint of whatever you’re trying to measure."

By creating solutions with known concentrations of the enzymes, the researchers determined that FT-IR could accurately measure the amount of plasminogen and plasmin. With this information, they were able to create a model of the plasmin system function that can be used in future studies into the enzyme’s impact on milk products.

"This research really can have a major economic impact," Mauer said. "It’s desirable for the enzyme to cause cheese ripening, but not for it to gel shelf-stable milks. So, in one case we’re trying to speed up plasminogen activation and plasmin breaking down of milk proteins; in the other case we’re trying to stop the reactions."

In the United States, 8 billion pounds of cheese is produced annually at a cost of about 1.3 cents per pound per month of ripening, according to U.S. Department of Agriculture estimates. The ripening process takes three to 12 months depending on the type of cheese.

Plasmin is the substance that gives cheeses that have been aged longer a sharper flavor.

"Think about Colby or a new cheddar verses an aged cheddar cheese; these are two very distinct flavors," Mauer said. "That’s what the enzyme system does – it breaks down proteins and releases some of these bitter compounds."

The scientists will investigate different processing treatments and their effects on the plasmin system in an effort to make these methods commercially viable, Mauer said.

The other scientist participating in this study was Banu Ozen, who was a postdoctoral student in the Department of Food Science at the time of the research.

The Indiana 21st Century Research and Technology Fund, the U.S. Department of Agriculture and Purdue University provided funding for this research.

Susan A. Steeves | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/030529.Mauer.plasmin.html

More articles from Process Engineering:

nachricht New technology for ultra-smooth polymer films
28.06.2018 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Diamond watch components
18.06.2018 | Schweizerischer Nationalfonds SNF

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>