Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers design new optical microprobe to detect subsurface organ abnormalities

17.04.2003


Photonics and ultrasound engineering researchers from Duke University and The George Washington University have collaborated to design an optical scanner miniaturized enough to be inserted into the body, where its light beams could someday detect abnormalities hidden in the walls of the colon, bladder or esophagus.



The experimental device, called an "electrostatic micromachine scanning mirror for optical coherence tomography," is described in an article published in the April 15, 2003, issue of the research journal Optics Letters. Once approved for use in hospitals and clinics, it would provide a new capability for endoscopy procedures.

Using tiny electrically activated artificial muscle fibers to vibrate a gold–covered mirror only about 2 millimeters wide, the prototype device broadcasts a special kind of quasi-laser light that can not only scan internal organ surfaces but also penetrate just beneath the surface.


Key researchers in the miniaturization effort are Jason Zara, an assistant professor of engineering and applied science at George Washington, and Stephen Smith, a professor of biomedical engineering at Duke’s Pratt School of Engineering in Durham, N.C.

"This new device has shown great promise for new diagnostic applications," said Zara, Smith’s former graduate student at Duke who is lead author of the Optics Letter report. Co-authors include Smith; Joseph Izatt, an associate professor of biomedical engineering at Duke’s Pratt School of Engineering; and Izatt’s former graduate student Siavash Yazdanfar and former postdoctoral research associate K. Divakar Rao.

Izatt, who leads biophotonics research activities at the Pratt School’s Fitzpatrick Center for Photonics and Communications Systems, is a leader in the budding optical scanning technology that Zara and Smith have scaled down to fit into catheters.

Zara and Smith designed and fabricated a system that includes a tiny mirror that vibrates up to 2,000 times a second on hinges just 3 millionths of a meter wide. The mirror quivers in response to the action of more than one-half million microscopic energy-storing capacitors arranged in parallel strips of the flexible plastic polyimide.

This arrangement acts like artificial muscle, Smith said. "When a voltage is applied to each of these capacitors, they contract. That pulls the mirror to the right. When the voltage is turned off, the mirror then swings back to the left." As the voltage rapidly switches on and off and the mirror vibrates, a beam of light from a fiberoptic cable is reflected onto a tissue surface in a scanning pattern. This repeat scanning produces optical images of the tissues’ outer layers.

The artificial muscle was made at MCNC, a Research Triangle Park microelectronics and computer research institution founded by the state of North Carolina. Zara and Smith have also founded a startup company, Memscept, Inc., to market the research.

The idea of using light as a deeper probe, called Optical Coherence Tomography (OCT), was pioneered at MIT, where Izatt was a postdoctoral scientist. He continued developing the concept while on the faculty of Case Western Reserve University before coming to Duke.

"The standard endoscope gives a physician an internal view of hollow organ surfaces with white light," Izatt said. "What OCT does is look below those surfaces.

"It can look up to about a millimeter and a half deep into the walls of organs," he added. "That’s sufficient to detect cancers such as carcinomas which grow near tissue surfaces, while they are still small enough to be completely removed. A physician’s normal view of the surface would not see a cancer there, but we can see it with OCT because we are looking underneath."

Izatt acknowledged that light waves cannot penetrate near as far into the skin as ultrasound, a competing technology that uses sound waves to image internal structures. On the other hand, wavelengths of light are much shorter than those of sound. As a result, "OCT’s resolution is much greater," Izatt said.

Rather than using the white light of normal endoscopy, this version of OCT harnesses infrared light from a laser-diode that has had one key laser feature disabled. "Strictly speaking, it is not a laser, but it’s close to being a laser," Izatt said.

While this modified "superluminescent diode" has laser-like "spatial coherence," meaning that its beam remains more focused than normal light, it does not emit light of a single color frequency like complete lasers can.

The special combination of features permits OCT investigators to use it in interferometry. Interferometry is a technique to create visual images by rapidly scanning surfaces with light of various wavelengths while interpreting the return reflections from various depths.

Using a superluminescent diode with interferometry is the "cheapest" form of OCT, Izatt said. And the similarities between this light scanning method and ultrasound delivery systems spurred a natural collaboration, added Smith, who is part of Duke’s ultrasound research program.

The Optics Letters article also included results of several micromachine OCT scans of biological tissue. One examined the lining of an excised pig colon. A second scan probed the cornea and iris of an excised pig’s eye. A third imaged the underside of a human fingertip.

OCT currently has U.S. Food and Drug Administration clinical approval only for scanning the eye’s retina, where the procedure is widely used, Izatt said. It is also being evaluated for various possible imaging uses in the gastrointestinal tract, the lungs, the bladder, the cervix and in coronary arteries, he added.

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu/

More articles from Process Engineering:

nachricht NRL develops laser processing method to increase efficiency of optoelectronic devices
16.04.2019 | Naval Research Laboratory

nachricht Hollow structures in 3D
29.03.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>