Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon, NASA to develop robot illustrating how to seek life on distant planets

02.04.2003


A team of Carnegie Mellon University and NASA scientists will travel to the Atacama Desert in northern Chile in April to conduct research that will help them develop and deploy a robot and instruments that may someday enable other robots to find life on Mars. The researchers will be using the Atacama, described as the most arid region on Earth, as a Martian analog.



The group is funded with a $3 million, three-year grant from NASA to the university’s Robotics Institute. They are collaborating with scientists at Carnegie Mellon’s Molecular Biosensor and Imaging Center who have a separate $900,000 grant from NASA to develop fluorescent dyes and automated microscopes that the robot will eventually use to locate various forms of life.

The project falls under NASA’s Astrobiology Science and Technology for Exploring Planets or ASTEP program, which concentrates on pushing the limits of technology in harsh environments. NASA experts believe that by pushing the known limits of life on Earth scientists will be better prepared to search for life on other worlds.


"Our goal is to make genuine discoveries about the limits of life on Earth and to generate knowledge that can be applied to future NASA missions to Mars," said project leader David Wettergreen, a research scientist at Carnegie Mellon’s Robotics Institute. "We will conduct three annual field experiments in the Atacama. Each time, an increasingly capable robot will use sensing and intelligence to find land forms or environmental conditions that could harbor life."

This year, the team will be using an autonomous, solar-powered robot named Hyperion to determine the optimum design, software and instrumentation for a new robot that will be used in the more extensive experiments to be conducted over the next two years. In 2001, Hyperion was taken to Devon Island in the Canadian Arctic where it successfully demonstrated a concept called Sun-Synchronous Navigation. It tracked the sun as a source of power and explored its surroundings as it traveled continuously through a 24-hour period of daylight.

During this year’s visit to the Atacama, researchers will focus on measurements and experiments with the robot’s hardware and software components. They will test Hyperion as it travels through the desert and collect data with scientific instruments, including a fluorescence imager, near-infrared spectrometer and a high-resolution panoramic imager.

Wettergreen said that Hyperion would travel some 10 kilometers through the desert this year while the researchers study issues related to robotic autonomy. The robot’s solar panels have been laid flat on top of its body for the upcoming experiments so it can capture the maximum amount of sunlight in the equatorial environment. In the Arctic, the panels were mounted vertically, like sails on a boat, because the sun was often low on the horizon.

A next generation robot, developed from the findings of this year’s work, should perform 50 kilometers of autonomous traverse in the desert in 2004. In 2005, the final year of the project, a robot equipped with a full array of instruments should operate autonomously as it travels 200 kilometers over a two-month period. During this climactic journey, the robot should map sites where life is abundant, and then move into drier areas where life has not been detected.

In 2005, plans call for the science team to operate as if it were exploring Mars in a scenario that would include a time delay and limited communication. "We’ll operate under the constraints of Martian exploration in order to better develop procedures for seeking life on another planet," Wettergreen said. "The robot will monitor its own power, balance, locomotion, communication and science operations as it goes. It needs to be able to move into unknown terrain using cameras and internal sensors--the same instruments and information that would be available to a robot exploring Mars."

In addition to Wettergreen, the Carnegie Mellon team heading to the Atacama includes William L. "Red" Whittaker, the Robotics Institute’s Fredkin research professor and the project’s principal investigator; Alan S. Waggoner, professor of biological sciences and director of Molecular Biosensor and Imaging Center; James P. Teza, research engineer; Michael D. Wagner, research programmer, and Robotics Institute doctoral students Christopher Urmson, Paul Tompkins, Denis Strelow and Vandi Verma.

Nathalie Cabrol, a planetary scientist at NASA’s Ames Research Center and the SETI Institute, will lead the science team for the investigation of the Atacama. Members of the science team are geologists and biologists who study both Earth and Mars at institutions including NASA Ames and the Johnson Space Center, SETI Institute, Jet Propulsion Laboratory, the University of Arizona, the University of Tennessee, Carnegie Mellon and Universidad Catolica del Norte (Chile).

"Their role in the first-year campaign will be to become acquainted with the data sent by the rover and assess the validity of astrobiological exploration strategies that will be used in the 2004 and 2005 field campaigns and on future missions to search for habitats and life on Mars," said Cabrol.

Also under development is the capability for education and science communities to experience the mission through the EventScope interface (www.eventscope.org). EventScope converts data from rovers and orbiters into three-dimensional "virtual worlds" that realistically represent remote sites, enabling students to experience the mission from their classroom computers.

EventScope’s team is directed by Peter Coppin, a research scientist at Carnegie Mellon’s STUDIO for Creative Inquiry, and includes experts in software engineering, interactive art and educational technology working to develop next generation tools for public remote experience. The goal is to have hundreds of students participating remotely in the Atacama experiment by the end of 2005.

Anne Watzman | EurekAlert!
Further information:
http://www.cmu.edu/
http://www.frc.ri.cmu.edu/atacama
http://www.cmu.edu/PR/releases03/030210_mars.html

More articles from Process Engineering:

nachricht New technology for ultra-smooth polymer films
28.06.2018 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Diamond watch components
18.06.2018 | Schweizerischer Nationalfonds SNF

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Detecting damage in non-magnetic steel with the help of magnetism

23.07.2018 | Materials Sciences

Researchers move closer to completely optical artificial neural network

23.07.2018 | Information Technology

Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place

23.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>