Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon, NASA to develop robot illustrating how to seek life on distant planets

02.04.2003


A team of Carnegie Mellon University and NASA scientists will travel to the Atacama Desert in northern Chile in April to conduct research that will help them develop and deploy a robot and instruments that may someday enable other robots to find life on Mars. The researchers will be using the Atacama, described as the most arid region on Earth, as a Martian analog.



The group is funded with a $3 million, three-year grant from NASA to the university’s Robotics Institute. They are collaborating with scientists at Carnegie Mellon’s Molecular Biosensor and Imaging Center who have a separate $900,000 grant from NASA to develop fluorescent dyes and automated microscopes that the robot will eventually use to locate various forms of life.

The project falls under NASA’s Astrobiology Science and Technology for Exploring Planets or ASTEP program, which concentrates on pushing the limits of technology in harsh environments. NASA experts believe that by pushing the known limits of life on Earth scientists will be better prepared to search for life on other worlds.


"Our goal is to make genuine discoveries about the limits of life on Earth and to generate knowledge that can be applied to future NASA missions to Mars," said project leader David Wettergreen, a research scientist at Carnegie Mellon’s Robotics Institute. "We will conduct three annual field experiments in the Atacama. Each time, an increasingly capable robot will use sensing and intelligence to find land forms or environmental conditions that could harbor life."

This year, the team will be using an autonomous, solar-powered robot named Hyperion to determine the optimum design, software and instrumentation for a new robot that will be used in the more extensive experiments to be conducted over the next two years. In 2001, Hyperion was taken to Devon Island in the Canadian Arctic where it successfully demonstrated a concept called Sun-Synchronous Navigation. It tracked the sun as a source of power and explored its surroundings as it traveled continuously through a 24-hour period of daylight.

During this year’s visit to the Atacama, researchers will focus on measurements and experiments with the robot’s hardware and software components. They will test Hyperion as it travels through the desert and collect data with scientific instruments, including a fluorescence imager, near-infrared spectrometer and a high-resolution panoramic imager.

Wettergreen said that Hyperion would travel some 10 kilometers through the desert this year while the researchers study issues related to robotic autonomy. The robot’s solar panels have been laid flat on top of its body for the upcoming experiments so it can capture the maximum amount of sunlight in the equatorial environment. In the Arctic, the panels were mounted vertically, like sails on a boat, because the sun was often low on the horizon.

A next generation robot, developed from the findings of this year’s work, should perform 50 kilometers of autonomous traverse in the desert in 2004. In 2005, the final year of the project, a robot equipped with a full array of instruments should operate autonomously as it travels 200 kilometers over a two-month period. During this climactic journey, the robot should map sites where life is abundant, and then move into drier areas where life has not been detected.

In 2005, plans call for the science team to operate as if it were exploring Mars in a scenario that would include a time delay and limited communication. "We’ll operate under the constraints of Martian exploration in order to better develop procedures for seeking life on another planet," Wettergreen said. "The robot will monitor its own power, balance, locomotion, communication and science operations as it goes. It needs to be able to move into unknown terrain using cameras and internal sensors--the same instruments and information that would be available to a robot exploring Mars."

In addition to Wettergreen, the Carnegie Mellon team heading to the Atacama includes William L. "Red" Whittaker, the Robotics Institute’s Fredkin research professor and the project’s principal investigator; Alan S. Waggoner, professor of biological sciences and director of Molecular Biosensor and Imaging Center; James P. Teza, research engineer; Michael D. Wagner, research programmer, and Robotics Institute doctoral students Christopher Urmson, Paul Tompkins, Denis Strelow and Vandi Verma.

Nathalie Cabrol, a planetary scientist at NASA’s Ames Research Center and the SETI Institute, will lead the science team for the investigation of the Atacama. Members of the science team are geologists and biologists who study both Earth and Mars at institutions including NASA Ames and the Johnson Space Center, SETI Institute, Jet Propulsion Laboratory, the University of Arizona, the University of Tennessee, Carnegie Mellon and Universidad Catolica del Norte (Chile).

"Their role in the first-year campaign will be to become acquainted with the data sent by the rover and assess the validity of astrobiological exploration strategies that will be used in the 2004 and 2005 field campaigns and on future missions to search for habitats and life on Mars," said Cabrol.

Also under development is the capability for education and science communities to experience the mission through the EventScope interface (www.eventscope.org). EventScope converts data from rovers and orbiters into three-dimensional "virtual worlds" that realistically represent remote sites, enabling students to experience the mission from their classroom computers.

EventScope’s team is directed by Peter Coppin, a research scientist at Carnegie Mellon’s STUDIO for Creative Inquiry, and includes experts in software engineering, interactive art and educational technology working to develop next generation tools for public remote experience. The goal is to have hundreds of students participating remotely in the Atacama experiment by the end of 2005.

Anne Watzman | EurekAlert!
Further information:
http://www.cmu.edu/
http://www.frc.ri.cmu.edu/atacama
http://www.cmu.edu/PR/releases03/030210_mars.html

More articles from Process Engineering:

nachricht Design treatment of advanced metals producing better sculpting
08.03.2019 | Purdue University

nachricht Laser Processes for Multi-Functional Composites
18.02.2019 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>