Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fabricated microvascular networks could create compact fluidic factories

24.03.2003


Using direct-write assembly of organic ink, researchers at the University of Illinois at Urbana-Champaign have developed a technique for fabricating three-dimensional microvascular networks. These tiny networks could function as compact fluidic factories in miniature sensors, chemical reactors, or computers used in applications from biomedicine to information technology.



"The fabrication technique produces a pervasive network of interconnected cylindrical channels, which can range from 10 to 300 microns in diameter," said Jennifer Lewis, a professor of materials science and engineering and of chemical engineering at Illinois. "Our approach opens up new avenues for device design that are currently inaccessible by conventional lithographic methods."

The microvascular networks also could be combined with self-healing functionality, "providing an analog to the human circulatory system for the next generation of autonomous healing materials," said Scott White, a professor of aeronautical and astronautical engineering and a researcher at the Beckman Institute for Advanced Science and Technology. "The embedded network would serve as a circulatory system for the continuous transport of repair chemicals to sites of damage within the material."


The scientists report their findings in a paper that has been accepted for publication in the journal Nature Materials, and posted on its Web site www.nature.com/materials.

To create a microvascular network, Lewis, White and graduate student Daniel Therriault begin by fabricating a scaffold using a robotic deposition apparatus and a fugitive organic ink. A computer-controlled robot squeezes the ink out of a syringe, almost like a cake decorator, building the scaffold layer by layer.

"The ink exits the nozzle as a continuous, rod-like filament that is deposited onto a moving platform, yielding a two-dimensional pattern," Lewis said. "After a layer is generated, the stage is raised and rotated, and another layer is deposited. This process is repeated until the desired structure is produced."

Once the scaffold has been created, it is surrounded with an epoxy resin. After curing, the resin is heated and the ink -- which liquefies -- is extracted, leaving behind a network of interlocking tubes and channels.

In the final step, the open network is filled with a photocurable resin. "The structure is then selectively masked and polymerized with ultraviolet light to plug selected channels," Lewis said. "Lastly, the uncured resin is drained, leaving the desired pathways in the completed network."

To demonstrate the effectiveness of their fabrication technique, the researchers built square spiral mixing towers within their microvascular networks. Each of the integrated tower arrays was made from a 16-layer scaffold. The mixing efficiency of these stair-cased towers was characterized by monitoring the mixing of two dyed fluid streams using fluorescent microscopy.

"Due to their complex architecture, these three-dimensional towers dramatically improve fluid mixing compared to simple one- and two-dimensional channels," White said. "By forcing the fluids to make right-angle turns as they wind their way up the tower, the fluid interface is made to fold on top of itself repeatedly. This chaotic advection, in addition to normal diffusion, causes the fluids to become well-mixed in a short linear distance."

In addition to serving as highly efficient and space-saving mixers in microfluidic devices, the microvascular networks offer improved functionality in the design of self-healing materials.

"With our current approach, we distribute microcapsules of healing agent throughout the material," White said. "Where damage occurs locally, the capsules break open and repair the material. With repeated damage in the same location, however, the supply of healing agent may become exhausted."

Using capillaries instead of capsules to carry the healing agent could improve the performance of self-healing materials, White said. "By incorporating a microvascular network within the material, we could continuously transport an unlimited supply of healing agent, significantly extending the lifetime of the material."

James E. Kloeppel | EurekAlert!
Further information:
http://www.nsf.gov/od/lpa/news/03/pr0330.htm

More articles from Process Engineering:

nachricht Roll-to-roll processes: Network R2RNet bundles expertise for the continuous functionalization of surfaces
10.06.2020 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Mass production of individualized products
02.06.2020 | Fraunhofer Institute for Electronic Nano Systems ENAS

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Coupled hair cells in the inner ear – „Together we are strong!“

06.07.2020 | Health and Medicine

Innovations for sustainability in a post-pandemic future

06.07.2020 | Social Sciences

Carbon-loving materials designed to reduce industrial emissions

06.07.2020 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>