Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aircraft technology helps diagnose artificial hip, knee problems

21.02.2003


To assess the wear and tear on jet engine parts, mechanics used an old technology called ferrography to run the aircraft’s lubricating fluid through a magnetic device to separate out metal shavings and other ferrous engine debris. A University of Rhode Island researcher uses a similar process to assess the wear and tear on artificial hip and knee joints so patients can reduce the number of follow-up surgeries they must undergo or reduce the time spent in revision surgery.



Donna Meyer, an assistant professor of mechanical engineering, anticipates using her research to create a "wear atlas" that can be used by orthopedic surgeons as a diagnostic tool. She said the atlas could be used to help identify the potential problems that patients are having with their implants prior to revision surgery.

Most artificial hips consist of a polyethylene socket and metal ball or metal-on-metal combinations that are connected to adjoining bones with screws or cement. Total knee replacements are made of similar materials. Over time as the ball, socket and bone rub against each other, tiny debris is produced and settles between the bone and the implant interface, discouraging the much needed growth of bone around the prosthesis. This contributes to the loosening and separation of the interface, which necessitates revision surgery to repair it.


"Polyethylene wear debris can be a significant problem for patients because a loosened joint can cause great discomfort," said Meyer, a Cranston resident. "If we can determine the number and size of wear debris contained in a patient’s synovial fluid, and also look at the ratio of polyethylene to other constituents like metal, bone, and cement particles, we can create a tool to assist in diagnosing the problem with the implant before surgery is necessary. Ultimately we would like to minimize the number of revision surgeries that patients face, or at least minimize the amount of time spent in surgery for additional operations."

Meyer takes a sample of a patient’s synovial fluid — " it’s a large component of the lubricating fluid around your knee or hip," she said — and uses a process called bio-ferrography to capture the tiny particles of polyethylene, metal, bone and cement using a very strong magnet. Since most of the wear debris isn’t magnetic and therefore wouldn’t be collected by the device, she adds to the fluid sample a magnetic compound that binds to the non-magnetic particles.

"We need to capture every tiny particle in each sample to make sure the atlas is accurate," said Meyer, whose research is funded by the National Science Foundation and the Rhode Island Biomedical Research Infrastructure Network.

Meyer’s interest in this research was sparked when she was a graduate student at Rensselaer Polytechnic Institute studying the lubrication of artificial hip joints. She talked to the chief of orthopedic surgery at the time at Albany Medical Center, who told her of his interest in bio-ferrography. She’s been researching the subject ever since.

Once she perfects the technique for collecting the wear debris, she will begin creating the atlas. Meyer said the atlas will be designed so doctors can easily compare a patient’s age, activity level, implant type and time since implantation with the size and composition of the wear debris to quickly determine which part of the implant is the likely cause of the problem. For example, small particles are more likely to lead to implant loosening. Large pieces of debris, on the other hand, contribute greatly to the wear volume, but it is not certain how much it contributes to implant loosening, if at all.

"The atlas can be used by doctors as a maintenance guide, in addition to a radiograph for example, and hopefully give more information about early wear detection, just like the guides used by aircraft mechanics," she said.

Todd McLeish | EurekAlert!
Further information:
http://www.uri.edu/

More articles from Process Engineering:

nachricht Decontaminating pesticide-polluted water using engineered nanomaterial and sunlight
16.01.2020 | Institut national de la recherche scientifique - INRS

nachricht TUM Agenda 2030: Combining forces for additive manufacturing
09.10.2019 | Technische Universität München

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>