Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultrasound shown to be potentially safe, effective way to kill bacteria

16.12.2002


High-power ultrasound, currently used for cell disruption, particle size reduction, welding and vaporization, has been shown to be 99.99 percent effective in killing bacterial spores after only 30 seconds of non contact exposure in experiments conducted by researchers at Penn State and Ultran Labs, Boalsburg, Pa.



In the experiments, bacterial spores contained in a paper envelope, were placed slightly (3mm) above the active area of a specially equipped source of inaudible, high frequency (70 to 200 kHz) sound waves and hit for 30 seconds. There was no contact medium, such as water or gel, between the ultrasound source and the spores as is typically used in low power medical diagnostic ultrasound. The experiments mark the first time that Non Contact Ultrasound (NCU) has been shown to inactivate bacterial spores.

The researchers say the experiments demonstrate that NCU is a potentially safe, effective, non-radioactive way to decontaminate mail, including packages, since ultrasound waves potentially can penetrate cardboard and other wrappings just as they do layers of skin and tissue when used to image internal organs in the human body. They add that the technology could potentially sterilize medical and surgical equipment, food materials, the air duct systems of buildings, airplanes – even the space station.


The research team includes Dr. Kelli Hoover, assistant professor of entomology; Mahesh Bhardwaj, director of research and development, Ultran Labs; and Dr. Nancy Ostiguy, senior research associate in entomology. A patent, "Gas Contact Ultrasound Germicide and Therapeutic Treatment," is pending on the technique.

Hoover explains that the team used Bt spores in their experiments rather than the deadly anthrax spores found to contaminate mail last year. Bt, bacillus thuringiensis, is a common commercial insecticide and is also a close cousin of the anthrax bacillus. "Bacillus anthracis and bacillus thuringiensis are very close relatives," she adds. "They differ by only a few genes on their plasmids that encode different toxins. If you remove those plasmids, Bt cannot be distinguished from B. anthracis and therefore can serve as a safe model for testing."

In the experiments, samples of Bt spores were each subjected to different amounts of NCU exposure for different lengths of time. The spores were then supplied with nutrients so that they could grow. The number of bacterial spores that survived was determined by counting the number of colonies that grew.

The NCU devices used in the experiments were invented by Bhardwaj who also develops and markets speciality transducers for industrial and biomedical applications. Bhardwaj holds U.S and international patents for very high transduction NCU transducers that can generate high power ultrasound in air in the frequency range of 50 kHz to 10 MHz, comparable to conventional ultrasound frequencies.

"I thought these NCU transducers should be investigated to destroy germs and spores since conventional high power ultrasound was already being used for invasive and non-invasive tissue destruction," adds Bhardwaj, who is director of R&D at Ultran.

He says, "The efficiency of an NCU device is dependent on the properties of the transition layers on the piezoelectric material which create the high acoustic pressure ultrasound waves in air. This principal, in conjunction with new materials, is applied in the new patented NCU device developed for decomtamination."

Bhardwaj, who a Penn State alumnus, recruited Hoover and Ostiguy for the decontamination studies which were supported, in part, by Hoover’s Hatch grants.


The researchers described their findings in a paper, Destruction of Bacterial Spores by Phenomenally High Efficiency Non-Contact Ultrasonic Transducers," which is posted at http://link.springer.de/link/service/journals/10019/tocs.htm by the publication Materials Research Innovations and will be brought out in hard copy. To access the paper online, click on "OnLine First – Immediate Online Publications."

Barbara Hale | EurekAlert!
Further information:
http://www.psu.edu/
http://link.springer.de/link/service/journals/10019/tocs.htm

More articles from Process Engineering:

nachricht Design treatment of advanced metals producing better sculpting
08.03.2019 | Purdue University

nachricht Laser Processes for Multi-Functional Composites
18.02.2019 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Researchers measure near-perfect performance in low-cost semiconductors

18.03.2019 | Power and Electrical Engineering

Nanocrystal 'factory' could revolutionize quantum dot manufacturing

18.03.2019 | Materials Sciences

Long-distance quantum information exchange -- success at the nanoscale

18.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>