Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultrasound shown to be potentially safe, effective way to kill bacteria

16.12.2002


High-power ultrasound, currently used for cell disruption, particle size reduction, welding and vaporization, has been shown to be 99.99 percent effective in killing bacterial spores after only 30 seconds of non contact exposure in experiments conducted by researchers at Penn State and Ultran Labs, Boalsburg, Pa.



In the experiments, bacterial spores contained in a paper envelope, were placed slightly (3mm) above the active area of a specially equipped source of inaudible, high frequency (70 to 200 kHz) sound waves and hit for 30 seconds. There was no contact medium, such as water or gel, between the ultrasound source and the spores as is typically used in low power medical diagnostic ultrasound. The experiments mark the first time that Non Contact Ultrasound (NCU) has been shown to inactivate bacterial spores.

The researchers say the experiments demonstrate that NCU is a potentially safe, effective, non-radioactive way to decontaminate mail, including packages, since ultrasound waves potentially can penetrate cardboard and other wrappings just as they do layers of skin and tissue when used to image internal organs in the human body. They add that the technology could potentially sterilize medical and surgical equipment, food materials, the air duct systems of buildings, airplanes – even the space station.


The research team includes Dr. Kelli Hoover, assistant professor of entomology; Mahesh Bhardwaj, director of research and development, Ultran Labs; and Dr. Nancy Ostiguy, senior research associate in entomology. A patent, "Gas Contact Ultrasound Germicide and Therapeutic Treatment," is pending on the technique.

Hoover explains that the team used Bt spores in their experiments rather than the deadly anthrax spores found to contaminate mail last year. Bt, bacillus thuringiensis, is a common commercial insecticide and is also a close cousin of the anthrax bacillus. "Bacillus anthracis and bacillus thuringiensis are very close relatives," she adds. "They differ by only a few genes on their plasmids that encode different toxins. If you remove those plasmids, Bt cannot be distinguished from B. anthracis and therefore can serve as a safe model for testing."

In the experiments, samples of Bt spores were each subjected to different amounts of NCU exposure for different lengths of time. The spores were then supplied with nutrients so that they could grow. The number of bacterial spores that survived was determined by counting the number of colonies that grew.

The NCU devices used in the experiments were invented by Bhardwaj who also develops and markets speciality transducers for industrial and biomedical applications. Bhardwaj holds U.S and international patents for very high transduction NCU transducers that can generate high power ultrasound in air in the frequency range of 50 kHz to 10 MHz, comparable to conventional ultrasound frequencies.

"I thought these NCU transducers should be investigated to destroy germs and spores since conventional high power ultrasound was already being used for invasive and non-invasive tissue destruction," adds Bhardwaj, who is director of R&D at Ultran.

He says, "The efficiency of an NCU device is dependent on the properties of the transition layers on the piezoelectric material which create the high acoustic pressure ultrasound waves in air. This principal, in conjunction with new materials, is applied in the new patented NCU device developed for decomtamination."

Bhardwaj, who a Penn State alumnus, recruited Hoover and Ostiguy for the decontamination studies which were supported, in part, by Hoover’s Hatch grants.


The researchers described their findings in a paper, Destruction of Bacterial Spores by Phenomenally High Efficiency Non-Contact Ultrasonic Transducers," which is posted at http://link.springer.de/link/service/journals/10019/tocs.htm by the publication Materials Research Innovations and will be brought out in hard copy. To access the paper online, click on "OnLine First – Immediate Online Publications."

Barbara Hale | EurekAlert!
Further information:
http://www.psu.edu/
http://link.springer.de/link/service/journals/10019/tocs.htm

More articles from Process Engineering:

nachricht TUM Agenda 2030: Combining forces for additive manufacturing
09.10.2019 | Technische Universität München

nachricht Copper oxide photocathodes: laser experiment reveals location of efficiency loss
10.05.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>