Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Technology For Aluminium Laser Welding

02.12.2002


Russian scientists of the Kovrov State Technology Academy have proposed a new technology for aluminium alloy welding based on using of two lasers. The first laser removes the oxide film by small portions from the surface of welded components, and the second laser executes the welding. Although the first phase lasts for about one millionth of a second, it is very important, since the refractory oxide film deteriorates the welding strength. The new method is also characterized by one more benefit: the place the juncture is covered with a thin film of molten metal increasing the efficiency of laser beam. The film also retains tiny particles, which erupt from the metal in the course of welding and increases the maximal welding depth.



The new laser device consists of two modified lasers, the mirror system and the lens, which focuses the emission on the welding area. The radius of laser beam which performs welding makes 0.3 millimeters. The welding rate was equal to 30 millimeters per minute.

The scientists have experimentally compared the new welding technology with the common one, where only one laser is used. The experiments have proved that a new method provides for twice or thrice higher depth of welding. In addition, the quality of seams (judging by the so-called ’’’’porosity of weld’’’’) increases twice, thus improving the product strength.


The issue of non-ferrous metals laser welding is rather critical. This is due to the fact that utilization of light alloys of aluminium is becoming more and more profitable. Therefore, ferrous metal is gradually replaced by non-ferrous one. However, the quality of aluminium welding by laser has not been satisfactory so far. Probably, the new technology would solve the problem.

By now, more than 100 thousand laser application areas are known. The Russian scientists appear to have discovered one more area.

Mr. Andrey Siver | alfa
Further information:
http://www.informnauka.ru/eng/2002/2002-11-29-02_266_e.htm

More articles from Process Engineering:

nachricht Roll-to-roll processes: Network R2RNet bundles expertise for the continuous functionalization of surfaces
10.06.2020 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Mass production of individualized products
02.06.2020 | Fraunhofer Institute for Electronic Nano Systems ENAS

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>