Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep Sea Technology Is Put To The Test In Campus Tank

22.11.2002


Photo A: Louis Whitcomb supervises underwater robotics research at Johns Hopkins, including a new lab that features a tank filled with nearly 43,000 gallons of water.
Photo by Jay Van Rensselaer


Photo B: Doctoral student James Kinsey prepares to test the navigation and control systems that guide the lab’s underwater robot.
Photo by Jay Van Rensselaer


Tethered Robotic Sub Helps Engineers Refine Computerized Navigation, Control Systems

In a new indoor tank filled with almost 43,000 gallons of water, Johns Hopkins engineers are developing and testing computer control systems to serve as the "brains" for some of the world’s leading deep sea robotic exploration vehicles. To promote advances in underwater robotics, the Whiting School of Engineering recently constructed the circular hydrodynamics tank, 14 feet deep and 25 feet in diameter, inside a large lab space within Maryland Hall.

In the tank, researchers are testing the JHU Remotely Operated Vehicle, a small underwater robot developed at the university. Its navigation and control systems, also developed at Johns Hopkins, have recently been adapted and enhanced for use in the much larger Jason II vehicle, a new deep-sea oceanographic research robot operated by the Woods Hole Oceanographic Institution. The Johns Hopkins navigation program also has been deployed aboard the Deep Submergence Vehicle Alvin, Woods Hole’s inhabited oceanographic submersible.



Future navigation and control techniques devised in the new test tank are expected to improve the operations of deep-sea robots such as Jason II and Isis, a similar vessel that Woods Hole is developing for the University of Southampton in the United Kingdom.

"Our research goal is to develop new technology to enable new oceanographic research," says Louis Whitcomb, associate professor in the Department of Mechanical Engineering, who is director of the new testing facility. "Moreover, we collaborate with other institutions like the National Deep Submergence Facility at Woods Hole Oceanographic Institution to deploy these new technologies for ocean science on vehicles such as Jason II and Alvin."

Deep sea robots like Jason II are relatively new but increasingly important tools for scientists who want to explore some of Earth’s most remote and hostile frontiers. Human scuba divers can descend safely only about 300 feet, or 100 meters. Yet the deepest parts of the ocean lie 11,000 meters below the surface. To explore greater depths, scientists in the 1960s began building small inhabited submersibles. Such vessels have been used to explore the R.M.S. Titanic’s wreckage. But because such vehicles must carry their own fuel and air supplies, explorers are limited to eight to 12 hours per dive.

To overcome these limitations, engineers in the last 15 years have begun building uninhabited robotic vehicles that remain tethered to a research ship on the surface. Long cables feed power and instructions to the submersible and retrieve images and other data. These vehicles usually are equipped with video cameras to allow researchers to see what the vehicle "sees" in real time. They often possess robotic arms to collect artifacts, rocks and biological samples.

"The deep ocean is a cold, dark, high-pressure, inhospitable environment, and this equipment must be able to operate reliably under these conditions," Whitcomb says. "Inhabited deep submersibles, such as the U.S. Deep Submergence Vehicle Alvin, remain the only way for humans to directly observe the benthic floor with their own eyes. Deep-diving submarines are ideal for many tasks, yet they have limited endurance. One advantage of an uninhabited submersible is that it can explore the deepest parts of the ocean 24 hours a day, seven days a week, under the remote control of science teams that are working around the clock aboard the mother ship."

Operating a robotic vehicle from a great distance poses certain challenges, however, and that’s where Whitcomb’s team comes in. "Our lab focuses on two key problems that occur in the design of remotely operated undersea vehicles: navigation and control," Whitcomb says. "One of the most difficult things about maneuvering an underwater vehicle is that you need to know where it is. What, precisely, is its position and orientation on our planet? To determine these things, we’ve developed a computer system that integrates signals from a dozen on-board sensors to compute the submersible’s position and velocity."

Based on this information, an operator on the surface can use a joystick to move the undersea robot in three dimensions. The control system developed by Whitcomb and his students also allows an operator to tell a computer precisely where the vehicle should be located; the software then automatically moves the vehicle to that point. At the new Johns Hopkins hydrodynamics lab, researchers are fine tuning this system by sending commands over a tether line to six electric thrusters mounted upon the test submersible.

At sea, researchers on the surface can use this same system to carefully control a larger underwater robot’s movements, instructing the vehicle to move in a precise grid pattern. This allows the sub to collect the images and sonar data needed to produce photographic and topographic maps of sections of the ocean’s floor that contain interesting geological, biological or archaeological features. Whitcomb says his computer system also can direct a submersible to hover just 6 to 12 inches above the ocean floor, close enough to collect samples without disturbing ecologically sensitive surfaces. "With this system," he says, "we can control a vehicle’s position to within a few centimeters and its heading to within a degree."

Whitcomb supervises underwater robotics research at Johns Hopkins as director of the Dynamical Systems and Control Laboratory. The JHU Remotely Operated Vehicle was designed and built by one of his doctoral students, David Smallwood. Another of Whitcomb’s doctoral students, James Kinsey, is refining the underwater navigation system at the new testing tank. Other Johns Hopkins marine and oceanographic researchers will have access to the new tank. Funds for construction of the tank and related research were provided by the National Science Foundation.

Office of News and Information
Johns Hopkins University
3003 N. Charles Street, Suite 100
Baltimore, Maryland 21218-3843
Phone: (410) 516-7160 | Fax (410) 516-5251

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu/news_info/news/audio-video/underwater.html
http://robotics.me.jhu.edu/dscl/
http://www.me.jhu.edu/

More articles from Process Engineering:

nachricht Copper oxide photocathodes: laser experiment reveals location of efficiency loss
10.05.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie

nachricht NIST research sparks new insights on laser welding
02.05.2019 | National Institute of Standards and Technology (NIST)

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

Im Focus: Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Stanford builds a heat shield just 10 atoms thick to protect electronic devices

19.08.2019 | Information Technology

Researchers demonstrate three-dimensional quantum hall effect for the first time

19.08.2019 | Physics and Astronomy

Catalysts for climate protection

19.08.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>