Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep Sea Technology Is Put To The Test In Campus Tank

22.11.2002


Photo A: Louis Whitcomb supervises underwater robotics research at Johns Hopkins, including a new lab that features a tank filled with nearly 43,000 gallons of water.
Photo by Jay Van Rensselaer


Photo B: Doctoral student James Kinsey prepares to test the navigation and control systems that guide the lab’s underwater robot.
Photo by Jay Van Rensselaer


Tethered Robotic Sub Helps Engineers Refine Computerized Navigation, Control Systems

In a new indoor tank filled with almost 43,000 gallons of water, Johns Hopkins engineers are developing and testing computer control systems to serve as the "brains" for some of the world’s leading deep sea robotic exploration vehicles. To promote advances in underwater robotics, the Whiting School of Engineering recently constructed the circular hydrodynamics tank, 14 feet deep and 25 feet in diameter, inside a large lab space within Maryland Hall.

In the tank, researchers are testing the JHU Remotely Operated Vehicle, a small underwater robot developed at the university. Its navigation and control systems, also developed at Johns Hopkins, have recently been adapted and enhanced for use in the much larger Jason II vehicle, a new deep-sea oceanographic research robot operated by the Woods Hole Oceanographic Institution. The Johns Hopkins navigation program also has been deployed aboard the Deep Submergence Vehicle Alvin, Woods Hole’s inhabited oceanographic submersible.



Future navigation and control techniques devised in the new test tank are expected to improve the operations of deep-sea robots such as Jason II and Isis, a similar vessel that Woods Hole is developing for the University of Southampton in the United Kingdom.

"Our research goal is to develop new technology to enable new oceanographic research," says Louis Whitcomb, associate professor in the Department of Mechanical Engineering, who is director of the new testing facility. "Moreover, we collaborate with other institutions like the National Deep Submergence Facility at Woods Hole Oceanographic Institution to deploy these new technologies for ocean science on vehicles such as Jason II and Alvin."

Deep sea robots like Jason II are relatively new but increasingly important tools for scientists who want to explore some of Earth’s most remote and hostile frontiers. Human scuba divers can descend safely only about 300 feet, or 100 meters. Yet the deepest parts of the ocean lie 11,000 meters below the surface. To explore greater depths, scientists in the 1960s began building small inhabited submersibles. Such vessels have been used to explore the R.M.S. Titanic’s wreckage. But because such vehicles must carry their own fuel and air supplies, explorers are limited to eight to 12 hours per dive.

To overcome these limitations, engineers in the last 15 years have begun building uninhabited robotic vehicles that remain tethered to a research ship on the surface. Long cables feed power and instructions to the submersible and retrieve images and other data. These vehicles usually are equipped with video cameras to allow researchers to see what the vehicle "sees" in real time. They often possess robotic arms to collect artifacts, rocks and biological samples.

"The deep ocean is a cold, dark, high-pressure, inhospitable environment, and this equipment must be able to operate reliably under these conditions," Whitcomb says. "Inhabited deep submersibles, such as the U.S. Deep Submergence Vehicle Alvin, remain the only way for humans to directly observe the benthic floor with their own eyes. Deep-diving submarines are ideal for many tasks, yet they have limited endurance. One advantage of an uninhabited submersible is that it can explore the deepest parts of the ocean 24 hours a day, seven days a week, under the remote control of science teams that are working around the clock aboard the mother ship."

Operating a robotic vehicle from a great distance poses certain challenges, however, and that’s where Whitcomb’s team comes in. "Our lab focuses on two key problems that occur in the design of remotely operated undersea vehicles: navigation and control," Whitcomb says. "One of the most difficult things about maneuvering an underwater vehicle is that you need to know where it is. What, precisely, is its position and orientation on our planet? To determine these things, we’ve developed a computer system that integrates signals from a dozen on-board sensors to compute the submersible’s position and velocity."

Based on this information, an operator on the surface can use a joystick to move the undersea robot in three dimensions. The control system developed by Whitcomb and his students also allows an operator to tell a computer precisely where the vehicle should be located; the software then automatically moves the vehicle to that point. At the new Johns Hopkins hydrodynamics lab, researchers are fine tuning this system by sending commands over a tether line to six electric thrusters mounted upon the test submersible.

At sea, researchers on the surface can use this same system to carefully control a larger underwater robot’s movements, instructing the vehicle to move in a precise grid pattern. This allows the sub to collect the images and sonar data needed to produce photographic and topographic maps of sections of the ocean’s floor that contain interesting geological, biological or archaeological features. Whitcomb says his computer system also can direct a submersible to hover just 6 to 12 inches above the ocean floor, close enough to collect samples without disturbing ecologically sensitive surfaces. "With this system," he says, "we can control a vehicle’s position to within a few centimeters and its heading to within a degree."

Whitcomb supervises underwater robotics research at Johns Hopkins as director of the Dynamical Systems and Control Laboratory. The JHU Remotely Operated Vehicle was designed and built by one of his doctoral students, David Smallwood. Another of Whitcomb’s doctoral students, James Kinsey, is refining the underwater navigation system at the new testing tank. Other Johns Hopkins marine and oceanographic researchers will have access to the new tank. Funds for construction of the tank and related research were provided by the National Science Foundation.

Office of News and Information
Johns Hopkins University
3003 N. Charles Street, Suite 100
Baltimore, Maryland 21218-3843
Phone: (410) 516-7160 | Fax (410) 516-5251

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu/news_info/news/audio-video/underwater.html
http://robotics.me.jhu.edu/dscl/
http://www.me.jhu.edu/

More articles from Process Engineering:

nachricht NRL develops laser processing method to increase efficiency of optoelectronic devices
16.04.2019 | Naval Research Laboratory

nachricht Hollow structures in 3D
29.03.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Marine Skin dives deeper for better monitoring

23.04.2019 | Information Technology

Geomagnetic jerks finally reproduced and explained

23.04.2019 | Earth Sciences

Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia

23.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>