NIST micro-positioner may help send messages from the stars

Phoning home from 93 billion miles away–only E.T. and other science fiction characters can do that. But with the help of National Institute of Standards and Technology (NIST) know-how, reality soon may catch up with imagination.

Conceptual designs for a “realistic interstellar explorer,” or RISE — a highly autonomous craft that would travel far beyond this solar system to collect scientific data — call for a laser-based communications link to Earth that relies in part on a recent NIST invention called a Parallel Cantilever Bi-axial Micro-Positioner. The prototype NIST device acts as a mechanical filter that generates very straight lines by screening out all other motions. Primarily intended for use in the delicate assembly and alignment of optoelectronic devices and applications in micro- and nano-manufacturing, the micro-positioner in a different application offers a promising means for meeting the demanding range, mass and power requirements for the RISE.

In its interstellar role, the micro-positioner would be used to position a lens that steers a laser beam communication link toward Earth. The beam must be pointed precisely because the distances would be, well, astronomical. The RISE is envisioned as having a range up to 1,000 Astronomical Units (AU)–1,000 times the distance from the Earth to the sun, or 93 billion miles.

A recent paper by researchers at NIST and Johns Hopkins University Applied Physics Laboratory (which is designing the RISE) concluded that an optical communications downlink spanning 1,000 AU is technically feasible in the next decade if these new technologies can be sufficiently refined. For example, the current range of the NIST micro-positioner would have to be improved by a factor of nearly 10.

Media Contact

Laura Ost EurekAlert!

More Information:

http://www.nist.gov/

All latest news from the category: Process Engineering

This special field revolves around processes for modifying material properties (milling, cooling), composition (filtration, distillation) and type (oxidation, hydration).

Valuable information is available on a broad range of technologies including material separation, laser processes, measuring techniques and robot engineering in addition to testing methods and coating and materials analysis processes.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors