Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging apparatus characterizes drops in ’dirty’ laboratory environments

20.09.2002


A high-fidelity spectrometric system for studying the behavior of drops and particles in industrial flame reactors has been constructed by researchers at the University of Illinois at Urbana-Champaign in collaboration with researchers at the University of Arizona. The instrument was used to study the potential of thermal combustors for reducing the volume of liquid nuclear wastes for safe, long-term storage.



Vitrification of radioactive waste into glassy solids is the most popular approach for disposal. By spraying radioactive sludge into a high-temperature combustor, essentially all the water and other nonradioactive material could be removed, leaving only the radioactive metallic elements to be vitrified for burial. Under optimized conditions, up to 99.99 percent of the metal ions in a waste stream can be scavenged in the combustor.

"That kind of efficiency would be great for most applications, but it’s not good enough when dealing with radioactive waste," said Alexander Scheeline, a professor of chemistry at Illinois. "Understanding the cause of the unscavenged fraction and devising a way to reduce it are essential if thermal processing is to be used for nuclear waste treatment."


One possible explanation is that large "rogue" drops are responsible for the unscavenged metals, Scheeline said. These drops do not pass through the hottest zones in the combustor, resulting in only partial vaporization.

To investigate the role of rogue drops in this process, Scheeline and his colleagues --Illinois postdoctoral researcher Jerry Cabalo, Arizona professor and head of chemical and environmental engineering Jost Wendt, and Arizona graduate student John Schmidt -- developed an optical system to monitor drop sizes and trajectories at very high spatial resolutions.

"In the thermal waste destruction process, small particle formation is also very important," Scheeline said. "Metals released into the gas phase readily form small particles, so it was crucial that this system also have the capability of detecting small soot particles."

In operation, large drops of water or diesel fuel were injected into the furnace. An excimer laser sent a beam into the combustor, illuminating a plane through which the drops passed. The scattered light was then passed to a CCD (charge-coupled device) camera and analyzed.

In contrast to optical monitoring of typical combustion experiments performed in a reasonably clean environment, "these measurements took place in a coal combustion laboratory at the University of Arizona," Scheeline said. "Coal dust from experiments and sand from the desert were all-too-frequent visitors."

To protect delicate optical components, the researchers covered the optical system with plastic panels and pumped clean, dry air into the enclosure. "Despite months of experiments on coal dust combustion taking place in the laboratory -- which left a thick layer of dust on the outside of the spectrograph and on the plastic housing -- the optical path remained free of dust and other contaminants," Scheeline said.

In their initial studies, the researchers demonstrated that the optical system could track large drops and the resulting soot particles through the flame. "To get these drops to break up and vaporize, we need a longer combustion zone, or we need to spray finer drops," Scheeline said.

The same kind of optical measurements and combustion research is relevant to designing cleaner-running automobile engines, studying combustion processes in rocket engines, and developing alternative means for solid waste disposal.

The researchers describe their instrumentation and experiments in the October issue of Applied Spectroscopy. The U.S. Department of Energy supported this work.

Jim Kloeppel | UIUC

More articles from Process Engineering:

nachricht NRL develops laser processing method to increase efficiency of optoelectronic devices
16.04.2019 | Naval Research Laboratory

nachricht Hollow structures in 3D
29.03.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>