Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fine-tuning fine art with lasers

11.09.2002


Art conservators have been slow to adopt lasers as restoration tools, preferring their trusty scalpels and solvents to untried technologies. But the first systematic study of the long-term effects of lasers on paintings should help ease their doubts: the results show that lasers can be superior restoration tools without sacrificing the safety of priceless works of art.



The findings are reported in the Sept. 15 print edition of Analytical Chemistry, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society.

European researchers studied the physical and chemical changes that occurred in various paint materials exposed to ultraviolet laser light, in order to address some of the unanswered questions about the effects of laser cleaning.


They found that lasers did no harm to paintings originally coated with varnish -- an extremely common practice with older paintings on canvas -- as long a very thin layer of varnish was left on the surface. For unvarnished paintings, chemical changes were few and easily controlled by manipulating the laser parameters. The study also showed the effects to be primarily photochemical -- initiated by light. This runs contrary to widespread concern that material adjacent to the laser beam could suffer damage from incidental heating.

The research is part of a cooperative project funded by the European Union to create a laser-based unit for cleaning valuable artwork.

The idea behind the project is that laser light, directed by a software-controlled workstation, can delicately remove varnish and dirt from paintings and painted artifacts, leaving the underlying pigments unharmed. The process can be monitored by a tool called laser-induced breakdown spectroscopy (LIBS), which analyzes the specific make-up of the plume produced by the laser as it removes material. This helps avoid damaging the artwork itself.

Over time, paintings accumulate dirt and soot; coatings of protective varnish grow hazy; and smugglers apply layers of paint to disguise their illicit freight. Natural disasters can also jeopardize precious national treasures, as illustrated by the recent flooding in Europe. While many cultural artifacts seem to have been spared from serious damage in the floods, conservators will probably have to deal with the effects of humidity and black crust formation, according to Marta Castillejo, Ph.D., a research scientist with the Spanish Council for Scientific Research and an author of the paper. "In some cases, lasers could be of help," she says, "especially when traditional methods fail."

Conventional cleaning techniques involve scalpels, messy solvents and painstaking labor, as conservators slowly peel back the layers of time. The chemicals involved can be harmful to the environment and dangerous if handled improperly.

Lasers offer many advantages over traditional methods, including the ability to focus on very small areas and greater control over the amount and type of material removed. They are also safe and environmentally friendly.

Invented in the early 1960s, lasers have since found widespread use in such diverse areas as metallurgy, medicine and even entertainment (e.g. the ever-popular Pink Floyd laser light show). Although art conservators first experimented with lasers in the 1970s, they have been slow to implement the technology, especially in the United States.

They maintain a skeptical attitude, and for good reason: no one wants to be responsible for charring a one-of-a-kind masterpiece. "They are concerned with long-term effects and also with the complications arising from the use of sophisticated, expensive equipment that ... requires special training for its proper use," Castillejo says.

Lasers initially found similar opposition in the medical field, but they have now replaced scalpels as the tool of choice for many surgeons. Castillejo sees this same shift occurring with the art conservator’s scalpel.

In the current study, the researchers used a krypton fluoride (KrF) excimer laser -- a pulsed-gas system that operates at a fixed wavelength in the ultraviolet spectrum -- to analyze a variety of pigments within the framework of a tempera paint process. "Egg tempera was the most important paint before oil paint was introduced in the 15th century," Castillejo says. "The pigments or colors are mixed with an emulsion of egg yolks rather than oil and can be thinned and solved with water."

Both organic and inorganic pigments were used in the experiment to provide a representative series used by traditional painters. Unvarnished samples were cured for a period of three weeks and then light-aged for four weeks to mimic real-aged paints. The varnished samples did not require artificial aging because shellac dries quickly.

Various analytical methods were used to study the chemical and physical changes that occurred in the paint samples. Profilometry determined changes on the paint surface; colorimetry measured the discoloration of the paint; and optical and vibrational spectroscopy and mass spectrometry detected chemical changes in the binding medium.

"There is a lot of interest among conservators in the development of a portable machine," Castillejo says. The existing prototype is not yet portable, but development is heading in that direction. And the workstation has been used successfully to clean several paintings that were damaged by fire.

Beverly Hassell | EurekAlert!
Further information:
http://www.acs.org/

More articles from Process Engineering:

nachricht Decontaminating pesticide-polluted water using engineered nanomaterial and sunlight
16.01.2020 | Institut national de la recherche scientifique - INRS

nachricht TUM Agenda 2030: Combining forces for additive manufacturing
09.10.2019 | Technische Universität München

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>