Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fingerprint recognition gets true `Fingerspitzengefühl`

02.09.2002

Will we pay using our fingerprint, or enter a building just touching a sensor? Does our mobile phone recognize our fingerprint? It is possible, as far as Dutch PhD student Asker Bazen is concerned. He has improved the verification techniques, resulting in a better result even for deformed and damaged prints. Together with a higher speed, the new methods can take away existing reserves for implementing fingerprint verification. Bazen is finishing his PhD research at the faculty of Electrical Engineering of the University of Twente, on September 18. Of all biometric methods, fingerprints are the most practical, is the conviction of Bazen: it can be done with a simple sensor that is coupled in a smart way with a database. Including the system in a mobile device like a cell phone is no problem in the near future. Iris-detection is another possibility of detection: it is extremely reliable but you need a sophisticated and fairly large camera.

Recognizing fingerprint is a complex problem for image recognition experts. The optical or capacitive sensor turns the fingerprint into a grayscale image: a black and white picture. Put the picture over a picture in the database, you would say, and you see if both print match. In practice, this turns out to be far less easy: this only works for fingerprints that are purely identical, and are saved in the database in exactly the same way. But there are numerous factors modifying the print. The policeman has a ‘flat’ print in his database, while he finds a print on a round whisky glass at the crime scene. Someone with wet or cold fingers has a slightly different fingerprint than someone with dry fingers.

Ridges and valleys Asker Bazen therefore wants to digitally re-shape the picture slightly, for an elastic fit with the picture in the database. Shrink it a little bit here, and stretch them in other places. He therefore uses recognition of the minutiae. A fingerprint consists of ridges and valleys. Where they end or split up, the minutiae are found. Every fingerprint has between twenty and fifty of them. By matching the minutiae of both prints, a new drawing grid is constructed, compensating for elastic deformation.

One of the existing problems is the processing time, especially for databases containing thousands of prints. Ideally, recognition must take place in ‘real time’. The user doesn’t want to wait or get five or six error messages before being admitted. On the other hand, an intruder must not be allowed to get in easily. Bazen mentions the black list problem, in which a small group of people is not allowed in,, e.g. football hooligan. “In that case you have a small database of people not to be admitted. You don’t want people to be able to manipulate their print in order to enter a stadium without a permit.“

In his thesis, he concludes that elastic matching is very promising, but Bazen also found a method that may be more competitive in terms of speed. It uses the main angles of the lines in the fingerprint. Four ‘cloudy’ pictures indicate the concentration of the four main angles (0, 45, 90, 135 degrees). “We always assumed that this is just a way for a first rough evaluation, but the end result is promising as well. Error percentage is going down to about 0.5 percent, with a good chance of still improving this drastically. At the same time, the speed is about 100 times higher.”

With an early version of his elastic method, Bazen in the international Fingerprint Verification Competition. He then already ended in the upper regions. His refined version has been sent to the 2002 edition of FVC. “I expect a lot of it. This technique is better than two years ago. The higher speed is a major advantage as well.”

The good old ink-and-sheets method in this way gets a full digital follow-up. The improvements Bazen, are very good for improving user acceptance. Acceptance is in fact the true bottleneck for replacing part of the PIN-passes and keys. Improved performance and speed are the only way to gain this acceptance. The sensor itself was not part of Bazen’s research. There are flexible and cheap sensors on the market, he says.

Asker Bazen MscEE defends his PhD-thesis on September 18. His promotors are prof.dr. C.H. Slump and prof.dr.-ing. O. Hermann. Comparative illustrations are available.

Press contact: University of Twente, Corporate Communication, Wiebe van der Veen, tel +31 53 4894244, e-mail w.r.vanderveen@utwente.nl

Wiebe van der Veen | AlphaGalileo

More articles from Process Engineering:

nachricht Efficient reactor dismantling by laser beam cutting?
05.02.2019 | Laser Zentrum Hannover e.V.

nachricht Adhesive Process Developed for Shingle Cell Technology
09.01.2019 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Gravitational waves will settle cosmic conundrum

15.02.2019 | Physics and Astronomy

Spintronics by 'straintronics'

15.02.2019 | Physics and Astronomy

Platinum nanoparticles for selective treatment of liver cancer cells

15.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>