Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fingerprint recognition gets true `Fingerspitzengefühl`

02.09.2002

Will we pay using our fingerprint, or enter a building just touching a sensor? Does our mobile phone recognize our fingerprint? It is possible, as far as Dutch PhD student Asker Bazen is concerned. He has improved the verification techniques, resulting in a better result even for deformed and damaged prints. Together with a higher speed, the new methods can take away existing reserves for implementing fingerprint verification. Bazen is finishing his PhD research at the faculty of Electrical Engineering of the University of Twente, on September 18. Of all biometric methods, fingerprints are the most practical, is the conviction of Bazen: it can be done with a simple sensor that is coupled in a smart way with a database. Including the system in a mobile device like a cell phone is no problem in the near future. Iris-detection is another possibility of detection: it is extremely reliable but you need a sophisticated and fairly large camera.

Recognizing fingerprint is a complex problem for image recognition experts. The optical or capacitive sensor turns the fingerprint into a grayscale image: a black and white picture. Put the picture over a picture in the database, you would say, and you see if both print match. In practice, this turns out to be far less easy: this only works for fingerprints that are purely identical, and are saved in the database in exactly the same way. But there are numerous factors modifying the print. The policeman has a ‘flat’ print in his database, while he finds a print on a round whisky glass at the crime scene. Someone with wet or cold fingers has a slightly different fingerprint than someone with dry fingers.

Ridges and valleys Asker Bazen therefore wants to digitally re-shape the picture slightly, for an elastic fit with the picture in the database. Shrink it a little bit here, and stretch them in other places. He therefore uses recognition of the minutiae. A fingerprint consists of ridges and valleys. Where they end or split up, the minutiae are found. Every fingerprint has between twenty and fifty of them. By matching the minutiae of both prints, a new drawing grid is constructed, compensating for elastic deformation.

One of the existing problems is the processing time, especially for databases containing thousands of prints. Ideally, recognition must take place in ‘real time’. The user doesn’t want to wait or get five or six error messages before being admitted. On the other hand, an intruder must not be allowed to get in easily. Bazen mentions the black list problem, in which a small group of people is not allowed in,, e.g. football hooligan. “In that case you have a small database of people not to be admitted. You don’t want people to be able to manipulate their print in order to enter a stadium without a permit.“

In his thesis, he concludes that elastic matching is very promising, but Bazen also found a method that may be more competitive in terms of speed. It uses the main angles of the lines in the fingerprint. Four ‘cloudy’ pictures indicate the concentration of the four main angles (0, 45, 90, 135 degrees). “We always assumed that this is just a way for a first rough evaluation, but the end result is promising as well. Error percentage is going down to about 0.5 percent, with a good chance of still improving this drastically. At the same time, the speed is about 100 times higher.”

With an early version of his elastic method, Bazen in the international Fingerprint Verification Competition. He then already ended in the upper regions. His refined version has been sent to the 2002 edition of FVC. “I expect a lot of it. This technique is better than two years ago. The higher speed is a major advantage as well.”

The good old ink-and-sheets method in this way gets a full digital follow-up. The improvements Bazen, are very good for improving user acceptance. Acceptance is in fact the true bottleneck for replacing part of the PIN-passes and keys. Improved performance and speed are the only way to gain this acceptance. The sensor itself was not part of Bazen’s research. There are flexible and cheap sensors on the market, he says.

Asker Bazen MscEE defends his PhD-thesis on September 18. His promotors are prof.dr. C.H. Slump and prof.dr.-ing. O. Hermann. Comparative illustrations are available.

Press contact: University of Twente, Corporate Communication, Wiebe van der Veen, tel +31 53 4894244, e-mail w.r.vanderveen@utwente.nl

Wiebe van der Veen | AlphaGalileo

More articles from Process Engineering:

nachricht New technology for ultra-smooth polymer films
28.06.2018 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Diamond watch components
18.06.2018 | Schweizerischer Nationalfonds SNF

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>