Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hope for nano-scale delivery of medicine using a light beam to move liquid through tiny tubes

29.08.2002


Medical researchers would like to use nano-scale tubes to push very tiny amounts of drugs dissolved in water to exactly where they are needed in the human body.



The roadblock to putting this theory into practical use has been the challenge of building pumps small enough to do the job. In addition to the engineering challenge of building a nano-scale pump, there is the added complication of clogging by any biological molecule that can occur in valves small enough to fit a channel the size of bacteria.

The solution – discovered by researchers at Arizona State University – is to create a system that does not rely on mechanical parts.


The ASU team of scientists and engineers reports in the American Chemical Society journal Langmuir (Thursday, August 29, 2002) on a technique they developed to pull water up a tube tinier than a straw by shining a beam of light on the surface of the tube. This technological advance, referred to as photocapillarity, may one day find a use in nanotechnology applications, such as the targeted distribution of medicine in the body.

"As the size of capillaries or channels in devices shrinks, it becomes very difficult to control the movement of "liquid," says Dr. Antonio Garcia, Arizona State University Bioengineering professor. "The everyday use of mechanical valves and pumps becomes difficult in nanotechnology because making them tinier is a manufacturing challenge. Also, any real-life application would be prone to operational problems, such as clogging of the pump or valve by tiny molecules."

Garcia, and colleagues Devens Gust and Mark Hayes, professors in the ASU Department of Chemistry & Biochemistry, have combined their bioengineering and chemistry skills to build upon the research on light responsive molecules.

With proceeds from a National Science Foundation grant, the researchers found a way of attaching the molecules to the surface and structuring the surrounding surface to control the spread of water.

"When we shine light just beyond the visible range, the light responsive molecules attract water and trigger the advancement of water through the channel," says Garcia.

An added benefit to the research is the development of a science lab demonstration. By the end of the year, students and teachers can order inexpensive glass tubes prepared by the ASU researchers and a laboratory guide to exploring the phenomena.

"Our hope is that by making this lab kit available it will stimulate the creativity of the next generation of scientists and engineers who will routinely design new products using nanotechnology," Garcia says.

Source: Tony Garcia, ASU Bioengineering, 480-965-8798

Virgil Renzulli | EurekAlert!
Further information:
http://www.asu.edu/asunews/

More articles from Process Engineering:

nachricht Harder 3D-printed tools – Researchers from Dresden introduce new process for hardmetal industry
11.10.2018 | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

nachricht Flying High with VCSEL Heating
04.10.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>