Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery could bring widespread uses for ’nanocrystals’

19.08.2002


Researchers at Purdue University have made a surprising discovery that could open up numerous applications for metal "nanocrystals," or tiny crystals that are often harder, stronger and more wear resistant than the same materials in bulk form.

The research engineers have discovered that the coveted nanocrystals are contained in common scrap, the chips that are normally collected and melted down for reuse.

"Imagine, you have all of these bins full of chips, and they get melted down as scrap," said Srinivasan Chandrasekar, a professor of industrial engineering. "But, in some sense, the scrap could be more valuable pound-for-pound than the material out of which the part is made."



Nanocrystals might be used to make super-strong and long-lasting metal parts. The crystals also might be added to plastics and other metals to make new types of composite structures for everything from cars to electronics.

However, nanocrystals have been far too expensive and difficult to produce to be of any practical industrial or commercial use. The cost of making nanocrystals is at least $100 per pound, while nanocrystals of certain metals critical to industry cannot be made at all with present laboratory techniques, said Chandrasekar and Dale Compton, also a professor of industrial engineering at Purdue.

"Our contribution has been in developing a process that we think can be used to make these materials in large quantities at very low cost," Chandrasekar said. "The cost is expected to be no more than $1 per pound, plus the initial cost of the bulk material."

Findings will appear in the October issue of the Journal of Materials Research, published by the Materials Research Society. The paper was written by Travis L. Brown and Srinivasan Swaminathan, graduate students in Purdue’s School of Industrial Engineering, Chandrasekar and Compton, Alexander King, head of the School of Materials Engineering, and Kevin Trumble, a professor in the School of Materials Engineering.

One process now used to make nanocrystals in research labs involves heating a metal until it vaporizes and then collecting nanocrystals as the vaporized metal condenses onto a cold surface.

"The process is cumbersome, and if you want to make a pound of the material, or a few hundred pounds, it’s time-consuming," Chandrasekar said. "There are other techniques, but all of them have serious limitations."

Chandrasekar and Compton have discovered that the chips left over from machining are either entirely or primarily made of nanocrystals. The chips, which are shaved away from metals as they are machined, ordinarily are collected as scrap, melted down and reused. But melting down the chips turns nanocrystals back into ordinary bulk metals, removing their super strength, wear resistance and other unusual properties.

These chips, then, might be saved and processed for use in a wide range of products. Metal nanocrystals might be incorporated into car bumpers, making the parts stronger, or into aluminum, making it more wear resistant. Metal nanocrystals might be used to produce bearings that last longer than their conventional counterparts, new types of sensors and components for computers and electronic hardware.

Nanocrystals of various metals have been shown to be 100 percent, 200 percent and even as much as 300 percent harder than the same materials in bulk form. Because wear resistance often is dictated by the hardness of a metal, parts made from nanocrystals might last significantly longer than conventional parts.

"One of the really big advantages of this is that you can do it with almost any material," Compton said. "You can make nanocrystals of steels, tungsten, titanium alloys, nickel alloys."

The engineers have measured increased hardness in nanocrystals of copper, tool steel, stainless steel, two other types of steel alloys and iron.

"We have a lot of data demonstrating that these materials are nanocrystalline and that they have enhanced mechanical properties," Chandrasekar said.

Currently, though, it is either prohibitively expensive or impossible to make nanocrystals of many alloys, including steel alloys critical to industry and commercial products.

The Purdue researchers were led to their discovery by findings in scientific literature.

"There is some work in the literature that says if you introduce very large strains into a material it will be converted into nanocrystalline," Compton said. "In our research, we knew that there was strain being introduced at the point of the cutting tool."

The very strains caused by a cutting tool also produces nanocrystals about 100 nanometers in diameter, he said.

Nano is a prefix meaning one-billionth, so a nanometer is one-billionth of a meter, which is roughly 10 atoms wide.

Nanocrystals are not currently used to make products. However, experimental uses for nanocrystals include research aimed at developing high-performance bearings, such as those used for helicopter rotors; creating new types of high-strength, lightweight composite materials; making superior fuel-injection components for diesel engines; and producing new types of chemical catalysts.

Further research will be needed to determine whether the nanocrystals contained in scrap chips retain their desired properties after standard processing steps. Those steps include milling the chips to make powders and then compressing and heating the powders to make metal parts. Nanocrystals currently produced in laboratories have been subjected to such processes, and they have retained their nanocrystalline properties, the engineers said.

Purdue has filed a patent application. The work has been funded by private donations and the Trask Pre-Seed Venture Fund, originally established in 1974 through an estate gift from Vern and Ramoth Trask, both Purdue alumni.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu
Sources: Dale Compton, (765) 494-0828, dcompton@ecn.purdue.edu
Srinivasan Chandrasekar, (765) 494-3623, chandy@purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu/
http://www.mrs.org/publications/jmr/

More articles from Process Engineering:

nachricht New technology for ultra-smooth polymer films
28.06.2018 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Diamond watch components
18.06.2018 | Schweizerischer Nationalfonds SNF

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>