New technique has earthquake resistance all wrapped up

Highway columns of glass or carbon fibre help structures meet and exceed building code requirements

Just how trustworthy are disintegrating columns that bulge and expose bent, rusting steel on elevated highways? “They are sitting ducks that, in an earthquake, could crumble,” says Professor Shamim Sheikh of U of T’s Department of Civil Engineering. His team has devised a strong, cost-effective method of structural reinforcement that is already proving its worth on highways and other concrete structures around the Greater Toronto Area.

Currently, contractors repair highway columns by adding more concrete and steel to the structure. Sheikh’s alternative, which uses glass or carbon fibre instead of steel, provides up to five times the strength of steel, helping structures meet and exceed the requirements of the current building codes. “It will extend the life of highways and give people precious extra seconds to get to safety during an earthquake,” he says. “We think cities everywhere, particularly in earthquake zones, will benefit from this technique.”

The procedure itself, which uses epoxy and a large, flexible sheet of glass or carbon fibres as the reinforcing material, is not new, Sheikh notes. However, his team is the first in North America to devise specialized retrofitting schemes for concrete structures. Sheikh and his team wrapped the materials around the highway columns and they strengthened bridge culverts with fibres – specifically, on Highways 401, 404 and the QEW – all without requiring any traffic-snarling road closures. The technique is detailed in the July 2002 issue of Engineering Structures.

Media Contact

Nicolle Wahl EurekLAlertt

All latest news from the category: Process Engineering

This special field revolves around processes for modifying material properties (milling, cooling), composition (filtration, distillation) and type (oxidation, hydration).

Valuable information is available on a broad range of technologies including material separation, laser processes, measuring techniques and robot engineering in addition to testing methods and coating and materials analysis processes.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors